Matko Grbac
matko.grbac@math.hr

Problem

We consider the following problem

$$
\begin{cases}\left(\rho(t, x) u^{\prime}(t, x)\right)^{\prime}-\operatorname{div}(\mathbf{A}(t, x) \nabla u(t, x))=f(t, x) & \text { in }(0, T) \times \Omega \tag{1}\\ u(0)=u^{0} \in H_{0}^{1}(\Omega), \quad \rho u^{\prime}(0)=u^{1} \in L^{2}(\Omega) & \text { in } \Omega\end{cases}
$$

with $f \in \mathcal{M}\left([0, T] ; L^{2}(\Omega)\right), \rho \in B V\left(0, T ; L^{\infty}(\Omega)\right), \mathbf{A} \in B V\left(0, T ; \mathbf{M}_{\text {div }}(\Omega)\right)$. Let us assume there exists $\alpha>0$ such that it holds

$$
\begin{align*}
\rho(t, x) \geq \alpha & \text { a.e. on }(0, T) \times \Omega \tag{2}\\
\mathbf{A}(t, x) \xi \cdot \xi \geq \alpha|\xi|^{2} & \text { a.e. on }(0, T) \times \Omega, \xi \in \mathbb{R}^{d} .
\end{align*}
$$

(3)

Existence and uniqueness of solution

Theorem. There exists unique solution $u \in L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right)$ with $u^{\prime} \in L^{\infty}\left(0, T ; L^{2}(\Omega)\right)$ of (1): Moreover, we have the following estimate

$$
\|u(t)\|_{H_{0}^{1}(\Omega)}^{2}+\left\|u^{\prime}(t)\right\|_{L^{2}(\Omega)}^{2} \lesssim\left\|u^{0}\right\|_{H_{0}^{1}(\Omega)}^{2}+\left\|u^{1}\right\|_{L^{2}(\Omega)}^{2}+\|f\|_{\mathcal{M}\left([0, T] ; L^{2}(\Omega)\right)}^{2}, \quad \text { a.e. } t \in[0, T]
$$

where the constant depends continously on $\alpha,\|\rho\|_{B V\left(0, T ; L^{\infty}(\Omega)\right)}$ and $\|\boldsymbol{A}\|_{B V\left(0, T ; \boldsymbol{M}_{\mathrm{div}}(\Omega)\right)}$.

Outline of the proof:

- Approximating coefficients in the main problem with those with more regularity in time using property (c) of $B V$ functions.
- Galerkin approach: Separate symmetric from antisymmetric part of \mathbf{A}; the symmetric part is treated in the usual way, while the condition on $\operatorname{div} \mathbf{A}$ is used to treat antisymmetric part of A.
- Uniqueness follows from the existence of the transpose problem, which is of the same type since $\mathbf{A} \in \mathbf{M}_{\text {div }}(\Omega)$ implies $\mathbf{A}^{T} \in \mathbf{M}_{\text {div }}(\Omega)$.

Homogenization

Consider a sequence of problems (1) where $\rho, \mathbf{A}, f, u^{0}, u^{1}$ are replaced with $\rho_{n}, \mathbf{A}_{n}, f_{n}, u_{n}^{0}, u_{n}^{1}$. Assume

$$
\rho_{n} \text { bounded in } B V\left(0, T ; L^{\infty}(\Omega)\right), \quad \mathbf{A}_{n} \text { bounded in } B V\left(0, T ; L^{\infty}\left(\Omega ; M_{d}^{\text {sym }}\right)\right)
$$

and that (2) and (3) hold for all n.
One can then extract subsequences and find $\rho \in L^{\infty}((0, T) \times \Omega), \mathbf{A} \in L^{\infty}\left(0, T ; L^{\infty}\left(\Omega ; M_{d}^{\text {sym }}\right)\right.$ such that it holds

$$
\begin{equation*}
\rho_{n} \stackrel{*}{\rightharpoonup} \rho \text { in } L^{\infty}((0, T) \times \Omega), \quad \mathbf{A}_{n}(t, \cdot) \stackrel{H}{\rightharpoonup} \mathbf{A}(t, \cdot) \text { up to a countable subset of }(0, T), \tag{4}
\end{equation*}
$$

so it is not a restriction to assume (4) in the sequel.
Theorem. With assumptions on $\rho_{n}, \boldsymbol{A}_{n}$ as above, assume additionally that there exist $f \in$ $\mathcal{M}\left([0, T] ; L^{2}(\Omega)\right), u^{0} \in H_{0}^{1}(\Omega)$ and $u^{1} \in L^{2}(\Omega)$ such that

$$
f_{n} \stackrel{*}{\rightharpoonup} f \text { in } \mathcal{M}\left([0, T] ; L^{2}(\Omega)\right), \quad u_{n}^{0} \rightharpoonup u^{0} \text { in } H_{0}^{1}(\Omega), \quad u_{n}^{1} \rightharpoonup u^{1} \text { in } L^{2}(\Omega)
$$

We then have that the unique solution u_{n} of (1) satisfies

$$
u_{n} \stackrel{*}{\rightharpoonup} u \text { in } L^{\infty}\left(0, T ; H_{0}^{1}(\Omega)\right), \quad u_{n}^{\prime} \stackrel{*}{\rightharpoonup} u^{\prime} \text { in } L^{\infty}\left(0, T ; L^{2}(\Omega)\right),
$$

where u is the unique solution of the problem of the same structure.

What can be said about non-symmetric A_{n} ?

The H-limit of $\mathbf{A}_{n} \in B V\left(0, T ; \mathbf{M}_{\text {div }}(\Omega)\right)$ lies in $B V\left(0, T ; L^{\infty}\left(\Omega ; \mathcal{M}_{d}\right)\right)$, but at this point it is not clear it is also in $B V\left(0, T ; \mathbf{M}_{\text {div }}(\Omega)\right)$. With that additional assumption, similar result follows. This assumption is always satisfied in the periodic case, where the H-limit is known to be a constant function, as well as in the case of simple laminates.

References

[1] J. Casado-Díaz, J. Couce-Calvo, F. Maestre, J. D. Martín-Gómez, Homogenization and corrector for the wave equation with discontinuous coefficients in time,
[2] L. Tartar, The General Theory of Homogenization.
[3] S. Brahim-Otsmane, G.A. Francfort, F. Murat, Correctors for the homogenization of the wave and heat equations,

$B V$ spaces

Let X be a Banach space and $f:[0, T] \rightarrow X$. We say that f is of bounded variation if it holds

$$
\sup _{0=t_{0}<\cdots<t_{n}=T} \sum_{i=1}^{n}\left\|f\left(t_{i}\right)-f\left(t_{i-1}\right)\right\|_{X}<\infty
$$

and we denote by $B V(0, T ; X)$ the space of all such functions. It is a Banach space when endowed with the norm

$$
\|f\|_{B V(0, T ; X)}:=\|f\|_{X}+V(f ;[0, T]) .
$$

$B V$ functions with values in a Banach space are similar in behaviour to those with scalar values, where it is known that $B V$ functions are those whose weak derivatives are bounded measures. Therefore, some results for Banach-valued case can be naturally generalized.
Some of the key structural properties of $B V$ space being used in proving the problem.
(a) Functions in $B V(0, T ; X)$ are continuous up to a countable set of $(0, T)$, and have one-sided limit in all points of $(0, T)$.
(b) For each function in $B V(0, T ; X)$ there is a unique bounded measure $\mu \in \mathcal{M}([0, T])$ such that

$$
\|f(t)-f(s)\|_{X} \leq \mu((s, t]), \quad s<t
$$

(c) For each $f \in B V(0, T ; X)$ there is a sequence $f_{n} \in W^{1,1}(0, T ; X)$ such that

$$
\begin{gathered}
\left\|f_{n}-f\right\|_{L^{1}(0, T ; X)} \rightarrow 0 \\
\left\|f_{n}^{\prime}\right\|_{L^{1}(0, T ; X)} \rightarrow V(f ;[0, T])
\end{gathered}
$$

Space $\mathrm{M}_{\text {div }}(\Omega)$

For $\mathbf{A}: \Omega \rightarrow M_{d}(\mathbb{R})$ we can define its divergence as a vector defined by

$$
\operatorname{div} \mathbf{A} \cdot \xi:=\operatorname{div}\left(\mathbf{A}^{T} \xi\right), \quad \xi \in \mathbb{R}^{d}
$$

Equivalently, if we denote by S_{1}, \ldots, S_{d} the columns of A, we have

$$
\operatorname{div} \mathbf{A}=\left[\begin{array}{c}
\operatorname{div} S_{1} \\
\vdots \\
\operatorname{div} S_{d}
\end{array}\right]
$$

We will denote the space of all $\mathbf{A} \in$ $L^{\infty}\left(\Omega ; M_{d}(\mathbb{R})\right)$ such that $\operatorname{div} \mathbf{A} \in L^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)$ and $\operatorname{div} \mathbf{A}^{T} \in L^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)$ with $\mathbf{M}_{\text {div }}(\Omega)$. It is an intersection of two graph spaces and therefore it is a Banach space with the norm

$$
\begin{aligned}
\|\mathbf{A}\|_{\mathbf{M}_{\text {div }}(\Omega)} & :=\|\mathbf{A}\|_{L^{\infty}\left(\Omega ; M_{d}(\mathbb{R})\right)} \\
& +\|\operatorname{div} \mathbf{A}\|_{L^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)} \\
& +\left\|\operatorname{div} \mathbf{A}^{T}\right\|_{L^{\infty}\left(\Omega ; \mathbb{R}^{d}\right)}
\end{aligned}
$$

This is a joint work with N. Antonić.

