Defect distributions applied to differential equations with power function type coefficients

Ivana Vojnović

Department of Mathematics and Informatics University of Novi Sad

Workshop Microlocal analysis and partial differential equations Zagreb, February 26, 2020.

• H-distributions (Antonić, Mitrović, 2011.) - $L^p - L^q$ spaces, $p = \frac{q}{q-1}$, $1 , <math>u_n \to 0$ in $L^p(\mathbb{R}^d)$, $v_n \to 0$ in $L^q(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$

- H-distributions (Antonić, Mitrović, 2011.) $L^p L^q$ spaces, $p = \frac{q}{q-1}$, $1 , <math>u_n \to 0$ in $L^p(\mathbb{R}^d)$, $v_n \to 0$ in $L^q(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$
- H-distributions $W^{-k,p} W^{k,q}$, $H^p_{-s} H^q_{-s}$ spaces, $s \in \mathbb{R}, 1 (Aleksić, Pilipović, V.)$

- H-distributions (Antonić, Mitrović, 2011.) $L^p L^q$ spaces, $p = \frac{q}{q-1}$, $1 , <math>u_n \to 0$ in $L^p(\mathbb{R}^d)$, $v_n \to 0$ in $L^q(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$
- H-distributions $W^{-k,p} W^{k,q}$, $H^p_{-s} H^q_{-s}$ spaces, $s \in \mathbb{R}, 1 (Aleksić, Pilipović, V.)$

If a sequence $u_n \rightharpoonup 0$ weakly in $W^{-k,p}(\mathbb{R}^d)$ and $v_n \rightharpoonup 0$ weakly in $W^{k,q}(\mathbb{R}^d)$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a distribution μ such that for every $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$, $\kappa = [d/2] + 1$,

$$\lim_{n'\to\infty}\langle\varphi_1u_{n'}\,,\,\overline{\mathcal{A}_{\overline{\psi}}(\varphi_2v_{n'})}\rangle=\langle\mu,\varphi_1\bar{\varphi}_2\psi\rangle.$$

- H-distributions (Antonić, Mitrović, 2011.) $L^p L^q$ spaces, $p = \frac{q}{q-1}$, $1 , <math>u_n \to 0$ in $L^p(\mathbb{R}^d)$, $v_n \to 0$ in $L^q(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$
- H-distributions $W^{-k,p} W^{k,q}$, $H^p_{-s} H^q_{-s}$ spaces, $s \in \mathbb{R}, 1 (Aleksić, Pilipović, V.)$

If a sequence $u_n \rightharpoonup 0$ weakly in $W^{-k,p}(\mathbb{R}^d)$ and $v_n \rightharpoonup 0$ weakly in $W^{k,q}(\mathbb{R}^d)$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a distribution μ such that for every $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$, $\kappa = [d/2] + 1$,

$$\lim_{n'\to\infty} \langle \varphi_1 u_{n'} \,,\, \overline{\mathcal{A}_{\overline{\psi}}(\varphi_2 v_{n'})} \rangle = \langle \mu, \varphi_1 \overline{\varphi}_2 \psi \rangle.$$

• $\mu \in \mathcal{SE}'(\mathbb{R}^d \times \mathbb{S}^{d-1})$

- H-distributions (Antonić, Mitrović, 2011.) $L^p L^q$ spaces, $p = \frac{q}{q-1}$, $1 , <math>u_n \to 0$ in $L^p(\mathbb{R}^d)$, $v_n \to 0$ in $L^q(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$
- H-distributions $W^{-k,p} W^{k,q}$, $H^p_{-s} H^q_{-s}$ spaces, $s \in \mathbb{R}, 1 (Aleksić, Pilipović, V.)$

If a sequence $u_n \rightharpoonup 0$ weakly in $W^{-k,p}(\mathbb{R}^d)$ and $v_n \rightharpoonup 0$ weakly in $W^{k,q}(\mathbb{R}^d)$, then there exist subsequences $(u_{n'}), (v_{n'})$ and a distribution μ such that for every $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$, $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$, $\kappa = [d/2] + 1$,

$$\lim_{n'\to\infty}\langle\varphi_1u_{n'}\,,\,\overline{\mathcal{A}_{\overline{\psi}}(\varphi_2v_{n'})}\rangle=\langle\mu,\varphi_1\bar{\varphi}_2\psi\rangle.$$

- $\mu \in \mathcal{SE}'(\mathbb{R}^d \times \mathbb{S}^{d-1})$
- $\mathcal{S}(\mathbb{R}^d) \hat{\otimes} \mathcal{E}(\mathbb{S}^{d-1}) = \mathcal{S}\mathcal{E}(\mathbb{R}^d \times \mathbb{S}^{d-1}).$

Unbounded symbols

• For weakly convergent sequences in $W^{-k,p} - W^{k,q}$ spaces multiplier (symbol) ψ is a bounded function, $\psi \in C(\mathbb{S}^{d-1})$ or $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$

Unbounded symbols

- For weakly convergent sequences in $W^{-k,p} W^{k,q}$ spaces multiplier (symbol) ψ is a bounded function, $\psi \in C(\mathbb{S}^{d-1})$ or $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$
- Function $a \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ is in $S^m_{1,0}$ class of symbols if for all $\alpha, \beta \in \mathbb{N}^d_0$,

$$|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}a(x,\xi)|\leq c_{\alpha,\beta}(1+|\xi|^{2})^{\frac{m-|\alpha|}{2}}.$$

Notation: $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$

Unbounded symbols

- For weakly convergent sequences in $W^{-k,p} W^{k,q}$ spaces multiplier (symbol) ψ is a bounded function, $\psi \in C(\mathbb{S}^{d-1})$ or $\psi \in C^{\kappa}(\mathbb{S}^{d-1})$
- Function $a \in C^{\infty}(\mathbb{R}^d \times \mathbb{R}^d)$ is in $S^m_{1,0}$ class of symbols if for all $\alpha, \beta \in \mathbb{N}^d_0$,

$$|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}a(x,\xi)|\leq c_{\alpha,\beta}(1+|\xi|^{2})^{\frac{m-|\alpha|}{2}}.$$

Notation: $\langle \xi \rangle = (1 + |\xi|^2)^{1/2}$

• Let $m \in \mathbb{R}$, $N \in \mathbb{N}_0$. Then we consider the space $s_{\infty,N}^m$ of all $\psi \in C^N(\mathbb{R}^d)$ such that

$$|\psi|_{\mathfrak{S}^m_{\infty,N}}:=\max_{|\alpha|\leq N}\|\partial_\xi^\alpha\psi(\xi)\langle\xi\rangle^{-m+|\alpha|}\|_{L^\infty}<\infty.$$

H-distributions with symbol $\psi \in s^m_{\infty,N}$

We fix $\psi \in \mathcal{S}^m_{\infty,N}$, $N \ge 3d + 5$. Then $\mathcal{A}_{\psi} : H^q_{m+s}(\mathbb{R}^d) \to H^q_{s}(\mathbb{R}^d)$ is continuous.

H-distributions with symbol $\psi \in s^m_{\infty,N}$

We fix $\psi \in \mathcal{S}^m_{\infty,N}$, $N \ge 3d + 5$. Then $\mathcal{A}_{\psi} : H^q_{m+s}(\mathbb{R}^d) \to H^q_s(\mathbb{R}^d)$ is continuous.

Theorem

Let $u_n \rightharpoonup 0$ in $H^p_{-s}(\mathbb{R}^d)$, $v_n \rightharpoonup 0$ in $H^q_{m+s}(\mathbb{R}^d)$, $m, s \in \mathbb{R}$, $\psi \in s^m_{\infty,N}$. Then, up to subsequences, there exists a distribution $\mu_\psi \in \mathcal{S}'(\mathbb{R}^d)$ such that for all $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$ we have that

$$\lim_{n\to\infty} \langle \varphi_1 u_n, \overline{\mathcal{A}_{\bar{\psi}}(\varphi_2 v_n)} \rangle = \langle \mu_{\psi}, \varphi_1 \bar{\varphi_2} \rangle.$$

H-distributions with symbol $\psi \in s^m_{\infty,N}$

We fix $\psi \in \mathcal{S}^m_{\infty,N}$, $N \ge 3d + 5$. Then $\mathcal{A}_{\psi} : H^q_{m+s}(\mathbb{R}^d) \to H^q_s(\mathbb{R}^d)$ is continuous.

Theorem

Let $u_n \rightharpoonup 0$ in $H^p_{-s}(\mathbb{R}^d)$, $v_n \rightharpoonup 0$ in $H^q_{m+s}(\mathbb{R}^d)$, $m, s \in \mathbb{R}$, $\psi \in s^m_{\infty,N}$. Then, up to subsequences, there exists a distribution $\mu_\psi \in \mathcal{S}'(\mathbb{R}^d)$ such that for all $\varphi_1, \varphi_2 \in \mathcal{S}(\mathbb{R}^d)$ we have that

$$\lim_{n\to\infty} \langle \varphi_1 u_n, \overline{\mathcal{A}_{\bar{\psi}}(\varphi_2 v_n)} \rangle = \langle \mu_{\psi}, \varphi_1 \bar{\varphi_2} \rangle.$$

Weight functions

• Defect distributions - $H_{\Lambda}^{-s,p} - H_{\Lambda}^{s,q}$ spaces, weights $\Lambda = \Lambda(x,\xi)$ (Pilipović, V.)

Weight functions

• Defect distributions - $H_{\Lambda}^{-s,p} - H_{\Lambda}^{s,q}$ spaces, weights $\Lambda = \Lambda(x,\xi)$ (Pilipović, V.)

Definition (Morando, Nicola, Rodino)

Positive function $\Lambda \in C^{\infty}(\mathbb{R}^N)$ is a weight function if the following conditions are satisfied:

• There exist positive constants $1 \le \mu_0 \le \mu_1$ and $c_0 < c_1$ such that

$$c_0\langle z\rangle^{\mu_0}\leq \Lambda(z)\leq c_1\langle z\rangle^{\mu_1},\quad z\in\mathbb{R}^N;$$

② There exists $\omega \ge \mu_1$ such that for any $\alpha \in \mathbb{N}_0^N$ and $\gamma \in \mathbb{K}_N \equiv \{0,1\}^N$

$$|z^{\gamma}\partial^{\alpha+\gamma}\Lambda(z)| \leq C_{\alpha,\gamma}\Lambda(z)^{1-\frac{1}{\omega}|\alpha|}, \quad z \in \mathbb{R}^{N}.$$

- Multi-quasi-elliptic polynomial:

$$\Lambda_{\mathcal{P}}(z) = \Big(\sum_{\alpha \in V(\mathcal{P})} z^{2\alpha}\Big)^{\frac{1}{2}}, \ z \in \mathbb{R}^N.$$

Here \mathcal{P} is a given complete polyhedron with the set of vertices $V(\mathcal{P})$.

Definition

Let $m \in \mathbb{R}$, $\rho \in (0, 1/\omega]$. We denote by $M\Gamma^m_{\rho, \Lambda}$ the space of functions $a \in C^{\infty}(\mathbb{R}^{2d})$ such that for all $\alpha, \beta \in \mathbb{N}_0^d$, $\gamma_1, \gamma_2 \in \{0, 1\}^d$ it holds that

$$|x^{\gamma_1}\xi^{\gamma_2}\partial_{\xi}^{\alpha+\gamma_2}\partial_{x}^{\beta+\gamma_1}a(x,\xi)|\leq C_{\alpha,\beta,\gamma_1,\gamma_2}\Lambda(x,\xi)^{m-\rho|\alpha+\beta|}.$$

Definition

Let $m \in \mathbb{R}$, $\rho \in (0, 1/\omega]$. We denote by $M\Gamma^m_{\rho, \Lambda}$ the space of functions $a \in C^{\infty}(\mathbb{R}^{2d})$ such that for all $\alpha, \beta \in \mathbb{N}_0^d$, $\gamma_1, \gamma_2 \in \{0, 1\}^d$ it holds that

$$|x^{\gamma_1}\xi^{\gamma_2}\partial_{\xi}^{\alpha+\gamma_2}\partial_{x}^{\beta+\gamma_1}a(x,\xi)|\leq C_{\alpha,\beta,\gamma_1,\gamma_2}\Lambda(x,\xi)^{m-\rho|\alpha+\beta|}.$$

$$S^m_{1,0}$$
: $\pmb{a} \in \pmb{C}^\infty(\mathbb{R}^{2d})$ and for all $\alpha, \beta \in \mathbb{N}^d_0$

$$|\partial_{\xi}^{\alpha}\partial_{x}^{\beta}a(x,\xi)| \leq c_{\alpha,\beta}\langle\xi\rangle^{m-|\alpha|}.$$

We equip $M\Gamma^m_{\rho,\Lambda}$ with the family of norms

$$||a||_{M\Gamma_k^m} = \sup_{|\alpha|+|\beta| \le k, \gamma \in \mathbb{K}} \sup_{(x,\xi) \in \mathbb{R}^{2d}} \frac{|x^{\gamma_1} \xi^{\gamma_2} \partial_{\xi}^{\alpha+\gamma_2} \partial_{x}^{\beta+\gamma_1} a(x,\xi)|}{\Lambda(x,\xi)^{m-\rho|\alpha+\beta|}},$$

where $k \in \mathbb{N}_0$, $\gamma = (\gamma_1, \gamma_2)$, $\gamma_i \in \mathbb{K}_d$, $\alpha, \beta \in \mathbb{N}_0^d$. Pseudo-differential operator T_a with a symbol $a \in M\Gamma_{\rho,\Lambda}^m$ is defined by

$$\mathcal{T}_a u(x) := \int_{\mathbb{R}^d} e^{ix\cdot\xi} a(x,\xi) \hat{u}(\xi) d\xi, \ u \in \mathcal{S}(\mathbb{R}^d).$$

Let $\Lambda(x,\xi)$ be a weight function, $s \in \mathbb{R}$, $1 . We denote by <math>H^{s,p}_{\Lambda}(\mathbb{R}^d)$ the space of all $u \in \mathcal{S}'(\mathbb{R}^d)$ such that $T_{\Lambda^s}u \in L^p(\mathbb{R}^d)$.

Since $\Lambda(x,\xi)^s$ is elliptic of order s there exists an operator $T_b \in \mathit{ML}_{\rho,\Lambda}^{-s}$ such that

$$T_bT_{\Lambda^s}=I+R_s,$$

where R_s is a regularizing operator. We define norm on $H_{\Lambda}^{s,p}$ in the following manner:

$$||u||_{s,p,\Lambda} = ||T_{\Lambda^s}u||_{L^p} + ||R_su||_{L^p}.$$

With this norm $H^{s,p}_{\Lambda}(\mathbb{R}^d)$ becomes a Banach space.

If $b \in M\Gamma^m_{1/\omega,\Lambda}$, then $T_b: H^{s+m,p}_{\Lambda}(\mathbb{R}^d) \to H^{s,p}_{\Lambda}(\mathbb{R}^d)$ continuously for $s,m \in \mathbb{R}$ and 1 . We have the following estimate

$$||T_b u||_{H^{s,p}_{\Lambda}} \leq C||b||_{M\Gamma_k^m}||u||_{H^{s+m,p}_{\Lambda}},$$

for some $k \in \mathbb{N}, k > 2d$.

If $b \in M\Gamma^m_{1/\omega,\Lambda}$, then $T_b: H^{s+m,p}_{\Lambda}(\mathbb{R}^d) \to H^{s,p}_{\Lambda}(\mathbb{R}^d)$ continuously for $s,m \in \mathbb{R}$ and 1 . We have the following estimate

$$||T_b u||_{H^{s,p}_{\Lambda}} \le C ||b||_{M\Gamma_k^m} ||u||_{H^{s+m,p}_{\Lambda}},$$

for some $k \in \mathbb{N}, k > 2d$.

Theorem (Lizorkin-Marcinkiewicz)

Let $m(\xi)$ be continuous together with derivatives $\partial_{\xi}^{\gamma} m(\xi)$, for any $\gamma \in \{0,1\}^d$. If there is a constant c > 0 such that

$$\xi^{\gamma}\partial_{\xi}^{\gamma}m(\xi) \leq c, \ \xi \in \mathbb{R}^{d}, \ \gamma \in \{0,1\}^{d},$$

then for 1 there exists a constant <math>B = B(p, d) such that $\|T_m u\|_{L^p} \le B\|u\|_{L^p}, \ u \in \mathcal{S}(\mathbb{R}^d).$

To obtain L^p -boundedness it is enough to assume that for $a(x,\xi)$ it holds that

$$|\xi^{\gamma}\partial_x^{\lambda}\partial_{\xi}^{\nu+\gamma}a(x,\xi)|\leq C\langle\xi\rangle^{-\varepsilon|\nu|},\ \ (x,\xi)\in\mathbb{R}^{2d},$$

for some $\varepsilon > 0$, and for all $\lambda, \nu \in \mathbb{N}_0^d$, $\gamma \in \mathbb{K}_d$.

Theorem

Let $v \in H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$, $1 < q < \infty$ and $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Then $\varphi v \in H^{m,q}_{\Lambda}(\mathbb{R}^d)$.

We denote by $(M\Gamma^m_{\rho,\Lambda})_0 \subset M\Gamma^m_{\rho,\Lambda}$ the space of symbols $\psi \in M\Gamma^m_{\rho,\Lambda}$ such that for all $(\alpha_1, \alpha_2) \in \mathbb{N}_0^{2d}$, $(\gamma_1, \gamma_2) \in \mathbb{K}_{2d}$ (resp. $\gamma \in \mathbb{K}_d$)

$$\lim_{n\to\infty}\sup_{|(x,\xi)|\geq n}\frac{|x^{\gamma_1}\xi^{\gamma_2}\partial^{(\alpha_1,\alpha_2)+(\gamma_1,\gamma_2)}\psi((x,\xi))|}{\Lambda(x,\xi)^{m-\rho(|\alpha_1|+|\alpha_2|)}}=0.$$

We denote by $(M\Gamma^m_{\rho,\Lambda})_0 \subset M\Gamma^m_{\rho,\Lambda}$ the space of symbols $\psi \in M\Gamma^m_{\rho,\Lambda}$ such that for all $(\alpha_1, \alpha_2) \in \mathbb{N}_0^{2d}$, $(\gamma_1, \gamma_2) \in \mathbb{K}_{2d}$ (resp. $\gamma \in \mathbb{K}_d$)

$$\lim_{n\to\infty}\sup_{|(x,\xi)|\geq n}\frac{|x^{\gamma_1}\xi^{\gamma_2}\partial^{(\alpha_1,\alpha_2)+(\gamma_1,\gamma_2)}\psi((x,\xi))|}{\Lambda(x,\xi)^{m-\rho(|\alpha_1|+|\alpha_2|)}}=0.$$

Theorem

Let $u_n \rightharpoonup 0$ in $L^p(\mathbb{R}^d)$ and $v_n \rightharpoonup 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$, $\rho = 1/\omega$. Then, up to a subsequence, there exists a distribution $\mu \in (\mathcal{S}(\mathbb{R}^d) \hat{\otimes} (M\Gamma^m_{\rho,\Lambda})_0)'$ (resp., $\mu \in (\mathcal{S}(\mathbb{R}^d) \hat{\otimes} (\widetilde{M\Gamma^m_{\rho,\Lambda}})_0)'$) such that for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$ and all $\psi \in (M\Gamma^m_{\rho,\Lambda})_0$ (resp., $\psi \in (\widetilde{M\Gamma^m_{\rho,\Lambda}})_0$),

$$\lim_{n\to\infty}\langle u_n, \overline{T_{\bar{\psi}}(\varphi v_n)}\rangle = \langle \mu, \bar{\varphi} \otimes \psi \rangle.$$

Let $u_n \rightharpoonup 0$ in $L^p(\mathbb{R}^d)$ and $v_n \rightharpoonup 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Assume that $\psi \in M\Gamma^m_{1/\omega,\Lambda}$. Then, up to subsequences, there exists a distribution $\mu_{\psi} \in \mathcal{S}'(\mathbb{R}^d)$ such that for all $\varphi \in \mathcal{S}(\mathbb{R}^d)$,

$$\lim_{n\to\infty}\langle u_n,\overline{T_{\bar{\psi}}(\varphi v_n)}\rangle=\langle \mu_{\psi},\bar{\varphi}\rangle.$$

Let $u_n \rightharpoonup 0$ in $L^p(\mathbb{R}^d)$. Assume that

$$\lim_{n\to\infty}\langle u_n,\,T_{\Lambda(x,\xi)^m}(\varphi v_n)\rangle=0,$$

for every sequence $v_n \rightharpoonup 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Then for every $\theta \in \mathcal{S}(\mathbb{R}^d)$, $\theta u_n \to 0$ strongly in $L^p(\mathbb{R}^d)$.

Let $u_n \rightharpoonup 0$ in $L^p(\mathbb{R}^d)$. Assume that

$$\lim_{n\to\infty}\langle u_n,\,T_{\Lambda(x,\xi)^m}(\varphi v_n)\rangle=0,$$

for every sequence $v_n \rightharpoonup 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Then for every $\theta \in \mathcal{S}(\mathbb{R}^d)$, $\theta u_n \to 0$ strongly in $L^p(\mathbb{R}^d)$.

Corollary

Let $u_n \rightharpoonup 0$ in $L^p(\mathbb{R}^d)$ and $a \in EM\Gamma^m_{\rho,\Lambda}$. Assume that

$$\lim_{n\to\infty}\langle u_n,\,T_a(\varphi v_n)\rangle=0,$$

for every sequence $v_n \rightharpoonup 0$ in $H^{m,q}_{\Lambda}(\mathbb{R}^d)$, $m \in \mathbb{R}$. Then for every $\theta \in \mathcal{S}(\mathbb{R}^d)$, $\theta u_n \to 0$ strongly in $L^p(\mathbb{R}^d)$.

Let

$$P(x,D)u_n = \sum_{(\alpha,\beta)\in V(\mathcal{P})} x^{\beta} D_x^{\alpha} u_n = f_n, \tag{1}$$

for some complete polyhedron \mathcal{P} , where $u_n \to 0$ in $H^{1,p}_{\mathcal{P}}$ and $\varphi f_n \to 0$ in $L^p(\mathbb{R}^d)$ for every $\varphi \in \mathcal{S}(\mathbb{R}^d)$. Here $V(\mathcal{P})$ denotes the set of vertices of \mathcal{P} and $p(x,\xi) = \sum_{(\alpha,\beta) \in V(\mathcal{P})} x^\beta \xi^\alpha \in M\Gamma^1_{1/\omega,\mathcal{P}}$.

Theorem

Let $u_n \rightharpoonup 0$ in $H^{1,p}_{\mathcal{P}}(\mathbb{R}^d)$ satisfies (1). Then for any $v_n \rightharpoonup 0$ in $L^q(\mathbb{R}^d)$ it holds that

$$\mu_p = 0$$
 in $\mathcal{S}'(\mathbb{R}^d)$.

If p is elliptic, then $\theta u_n \to 0$ in $H^{1,p}_{\mathcal{D}}$, for every $\theta \in \mathcal{S}(\mathbb{R}^d)$.

Bibliography

- Aleksić, J., Pilipović, S., Vojnović, I., *H-distributions with unbounded multipliers*, J. Pseudo-Differ. Oper. Appl. (2018)
- Pilipović, S., Vojnović, I., *Defect distributions applied to differential equations with power function type coefficients*, J. Pseudo-Differ. Oper. Appl. (2019)
- Antonić, N., Mitrović, D., *H-distributions: an extension of H-measures to* an $L^p L^q$ setting, Abstr. Appl. Anal. (2011)
- Morando, A., L^p -regularity for a class of pseudodifferential operators in \mathbb{R}^n , J. Partial Differential Equations (2005)
- Nicola F., Rodino L., *Global Pseudo-Differential Calculus on Euclidean Spaces*, Pseudo-Differential Operators. Theory and Applications, 4. Birkhäuser Verlag, Basel, (2010)
- Tartar, L. *H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations.* Proc. Roy. Soc. Edinburgh Sect. A 115 (1990)