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H-distributions (Antonić, Mitrović, 2011.) - Lp − Lq spaces, p = q
q−1 ,

1 < p <∞, un ⇀ 0 in Lp(Rd ), vn ⇀ 0 in Lq(Rd ), ψ ∈ Cκ(Sd−1)

H-distributions - W−k,p −W k,q , Hp
−s − Hq

−s spaces, s ∈ R,1 < p <∞
(Aleksić, Pilipović, V. )

Theorem

If a sequence un ⇀ 0 weakly in W−k,p(Rd ) and vn ⇀ 0 weakly in W k,q(Rd ),
then there exist subsequences (un′), (vn′) and a distribution µ such that for
every ϕ1, ϕ2 ∈ S(Rd ), ψ ∈ Cκ(Sd−1), κ = [d/2] + 1 ,

lim
n′→∞

〈ϕ1un′ , Aψ(ϕ2vn′)〉 = 〈µ, ϕ1ϕ̄2ψ〉.

µ ∈ SE ′(Rd × Sd−1)

S(Rd )⊗̂E(Sd−1) = SE(Rd × Sd−1).
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Unbounded symbols

For weakly convergent sequences in W−k,p −W k,q spaces multiplier
(symbol) ψ is a bounded function, ψ ∈ C(Sd−1) or ψ ∈ Cκ(Sd−1)

Function a ∈ C∞(Rd × Rd ) is in Sm
1,0 class of symbols if for all α, β ∈ Nd

0 ,

|∂αξ ∂
β
x a(x , ξ)| ≤ cα,β(1 + |ξ|2)

m−|α|
2 .

Notation: 〈ξ〉 = (1 + |ξ|2)1/2

Let m ∈ R, N ∈ N0. Then we consider the space sm
∞,N of all ψ ∈ CN(Rd )

such that

|ψ|sm
∞,N

:= max
|α|≤N

‖∂αξ ψ(ξ)〈ξ〉−m+|α|‖L∞ <∞.
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H-distributions with symbol ψ ∈ sm
∞,N

We fix ψ ∈ sm
∞,N ,N ≥ 3d + 5. Then Aψ : Hq

m+s(Rd )→ Hq
s (Rd ) is continuous.

Theorem

Let un ⇀ 0 in Hp
−s(Rd ), vn ⇀ 0 in Hq

m+s(Rd ), m, s ∈ R, ψ ∈ sm
∞,N . Then, up to

subsequences, there exists a distribution µψ ∈ S ′(Rd ) such that for all
ϕ1, ϕ2 ∈ S(Rd ) we have that

lim
n→∞
〈ϕ1un,Aψ̄(ϕ2vn)〉 = 〈µψ, ϕ1ϕ̄2〉.
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Weight functions

Defect distributions - H−s,p
Λ − Hs,q

Λ spaces, weights Λ = Λ(x , ξ) (Pilipović,
V.)

Definition (Morando, Nicola, Rodino)

Positive function Λ ∈ C∞(RN) is a weight function if the following conditions
are satisfied:

1 There exist positive constants 1 ≤ µ0 ≤ µ1 and c0 < c1 such that

c0〈z〉µ0 ≤ Λ(z) ≤ c1〈z〉µ1 , z ∈ RN ;

2 There exists ω ≥ µ1 such that for any α ∈ NN
0 and γ ∈ KN ≡ {0,1}N

|zγ∂α+γΛ(z)| ≤ Cα,γΛ(z)1− 1
ω |α|, z ∈ RN .
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1 Λ(x , ξ) = (1 + |x |2 + |ξ|2)
1
2 , x , ξ ∈ Rd

2 Multi-quasi-elliptic polynomial:

ΛP(z) =
( ∑
α∈V (P)

z2α
) 1

2
, z ∈ RN .

Here P is a given complete polyhedron with the set of vertices V (P).
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Definition

Let m ∈ R, ρ ∈ (0,1/ω]. We denote by MΓm
ρ,Λ the space of functions

a ∈ C∞(R2d ) such that for all α, β ∈ Nd
0 , γ1, γ2 ∈ {0,1}d it holds that

|xγ1ξγ2∂α+γ2
ξ ∂β+γ1

x a(x , ξ)| ≤ Cα,β,γ1,γ2 Λ(x , ξ)m−ρ|α+β|.

Sm
1,0: a ∈ C∞(R2d ) and for all α, β ∈ Nd

0

|∂αξ ∂
β
x a(x , ξ)| ≤ cα,β〈ξ〉m−|α|.
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We equip MΓm
ρ,Λ with the family of norms

‖a‖MΓm
k

= sup
|α|+|β|≤k,γ∈K

sup
(x,ξ)∈R2d

|xγ1ξγ2∂α+γ2
ξ ∂β+γ1

x a(x , ξ)|
Λ(x , ξ)m−ρ|α+β| ,

where k ∈ N0, γ = (γ1, γ2), γi ∈ Kd , α, β ∈ Nd
0 .

Pseudo-differential operator Ta with a symbol a ∈ MΓm
ρ,Λ is defined by

Tau(x) :=

∫
Rd

eix·ξa(x , ξ)û(ξ)d̄ξ, u ∈ S(Rd ).
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Let Λ(x , ξ) be a weight function, s ∈ R, 1 < p <∞. We denote by Hs,p
Λ (Rd )

the space of all u ∈ S ′(Rd ) such that TΛs u ∈ Lp(Rd ).
Since Λ(x , ξ)s is elliptic of order s there exists an operator Tb ∈ ML−s

ρ,Λ such
that

TbTΛs = I + Rs,

where Rs is a regularizing operator. We define norm on Hs,p
Λ in the following

manner:
‖u‖s,p,Λ = ‖TΛs u‖Lp + ‖Rsu‖Lp .

With this norm Hs,p
Λ (Rd ) becomes a Banach space.
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Theorem

If b ∈ MΓm
1/ω,Λ, then Tb : Hs+m,p

Λ (Rd )→ Hs,p
Λ (Rd ) continuously for s,m ∈ R

and 1 < p <∞. We have the following estimate

‖Tbu‖Hs,p
Λ
≤ C‖b‖MΓm

k
‖u‖Hs+m,p

Λ
,

for some k ∈ N, k > 2d.

Theorem (Lizorkin-Marcinkiewicz)

Let m(ξ) be continuous together with derivatives ∂γξ m(ξ), for any γ ∈ {0,1}d .
If there is a constant c > 0 such that

ξγ∂γξ m(ξ) ≤ c, ξ ∈ Rd , γ ∈ {0,1}d ,

then for 1 < p <∞ there exists a constant B = B(p,d) such that
‖Tmu‖Lp ≤ B‖u‖Lp , u ∈ S(Rd ).
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To obtain Lp-boundedness it is enough to assume that for a(x , ξ) it holds that

|ξγ∂λx ∂
ν+γ
ξ a(x , ξ)| ≤ C〈ξ〉−ε|ν|, (x , ξ) ∈ R2d ,

for some ε > 0, and for all λ, ν ∈ Nd
0 , γ ∈ Kd .

Theorem

Let v ∈ Hm,q
Λ (Rd ), m ∈ R,1 < q <∞ and ϕ ∈ S(Rd ). Then ϕv ∈ Hm,q

Λ (Rd ).
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We denote by (MΓm
ρ,Λ)0 ⊂ MΓm

ρ,Λ the space of symbols ψ ∈ MΓm
ρ,Λ such that for

all (α1, α2) ∈ N2d
0 , (γ1, γ2) ∈ K2d (resp. γ ∈ Kd )

lim
n→∞

sup
|(x,ξ)|≥n

|xγ1ξγ2∂(α1,α2)+(γ1,γ2)ψ((x , ξ))|
Λ(x , ξ)m−ρ(|α1|+|α2|)

= 0.

Theorem

Let un ⇀ 0 in Lp(Rd ) and vn ⇀ 0 in Hm,q
Λ (Rd ), m ∈ R, ρ = 1/ω. Then, up to a

subsequence, there exists a distribution µ ∈ (S(Rd )⊗̂(MΓm
ρ,Λ)0)′ (resp.,

µ ∈ (S(Rd )⊗̂(M̃Γm
ρ,Λ)

0
)′) such that for all ϕ ∈ S(Rd ) and all ψ ∈ (MΓm

ρ,Λ)0

(resp., ψ ∈ ˜(MΓm
ρ,Λ)

0
),

lim
n→∞
〈un,Tψ̄(ϕvn)〉 = 〈µ, ϕ̄⊗ ψ〉.
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Theorem

Let un ⇀ 0 in Lp(Rd ) and vn ⇀ 0 in Hm,q
Λ (Rd ), m ∈ R. Assume that

ψ ∈ MΓm
1/ω,Λ. Then, up to subsequences, there exists a distribution

µψ ∈ S ′(Rd ) such that for all ϕ ∈ S(Rd ),

lim
n→∞
〈un,Tψ̄(ϕvn)〉 = 〈µψ, ϕ̄〉.
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Theorem

Let un ⇀ 0 in Lp(Rd ). Assume that

lim
n→∞
〈un,TΛ(x,ξ)m (ϕvn)〉 = 0,

for every sequence vn ⇀ 0 in Hm,q
Λ (Rd ), m ∈ R. Then for every θ ∈ S(Rd ),

θun → 0 strongly in Lp(Rd ).

Corollary

Let un ⇀ 0 in Lp(Rd ) and a ∈ EMΓm
ρ,Λ. Assume that

lim
n→∞
〈un,Ta(ϕvn)〉 = 0,

for every sequence vn ⇀ 0 in Hm,q
Λ (Rd ), m ∈ R. Then for every θ ∈ S(Rd ),

θun → 0 strongly in Lp(Rd ).
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Let
P(x ,D)un =

∑
(α,β)∈V (P)

xβDα
x un = fn, (1)

for some complete polyhedron P, where un ⇀ 0 in H1,p
P and

ϕfn → 0 in Lp(Rd ) for every ϕ ∈ S(Rd ). Here V (P) denotes the set of
vertices of P and p(x , ξ) =

∑
(α,β)∈V (P)

xβξα ∈ MΓ1
1/ω,P .

Theorem

Let un ⇀ 0 in H1,p
P (Rd ) satisfies (1). Then for any vn ⇀ 0 in Lq(Rd ) it holds that

µp = 0 in S ′(Rd ).

If p is elliptic, then θun → 0 in H1,p
P , for every θ ∈ S(Rd ).
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