Bounded operators on mixed-norm Lebesgue spaces

Ivan Ivec

Faculty of Metallurgy University of Zagreb

IWOTA 2022 Kraków, September 6-10, 2022.

Joint work with Nenad Antonić and Ivana Vojnović

Pseudodifferential operators

Mixed-norm Lebesgue spaces

Hörmander-Mihlin theorem

Continuity of linear operators on mixed-norm Lebesgue spaces

Symbols and operators

$$\begin{split} S^m_{\rho,\delta,N,N'} & \dots \text{ for } |\alpha| \leq N, |\beta| \leq N' \text{ it holds} \\ & (\forall x \in \textbf{R}^d) (\forall \xi \in \textbf{R}^d) \quad |\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)| \leq C_{\alpha,\beta} \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|} \,, \\ \text{where } \langle \xi \rangle &= (1+|\xi|^2)^{\frac{1}{2}} \\ \text{norm: } |\sigma|_{N,N'}^{(m,\rho,\delta)} &= \max_{|\alpha| \leq N, |\beta| \leq N'} \sup_{x,\xi \in \textbf{R}^d} \frac{|\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)|}{\langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}} \end{split}$$

Symbols and operators

$$S^m_{\rho,\delta,N,N'}$$
 ... for $|\alpha| \leq N, |\beta| \leq N'$ it holds

$$(\forall x \in \mathbf{R}^d)(\forall \xi \in \mathbf{R}^d) \quad |\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)| \le C_{\alpha,\beta} \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}$$

$$\begin{aligned} &\text{where } \langle \xi \rangle = (1 + |\xi|^2)^{\frac{1}{2}} \\ &\text{norm: } |\sigma|_{N,N'}^{(m,\rho,\delta)} = \max_{|\alpha| \leq N, |\beta| \leq N'} \sup_{x,\xi \in \mathbf{R}^d} \frac{|\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)|}{\langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}} \end{aligned}$$

For $\sigma \in S^m_{\rho,\delta,N,N'}$ we denote the corresponding pseudodifferential operator T_σ by

$$T_{\sigma}\varphi(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi} \sigma(x,\xi) \hat{\varphi}(\xi) \ d\xi, \ \varphi \in \mathcal{S}(\mathbf{R}^d),$$

where $d\xi = (2\pi)^{-d}d\xi$.

Known continuity results

Our starting point is a famous result by Coifman and Meyer: for $0 \le \delta \le \rho \le 1$, $\delta < 1$ and m = 0 it is enough to have $N, N' > \frac{d}{2}$ to obtain the continuity on $L^2(\mathbf{R}^d)$.

Known continuity results

Our starting point is a famous result by Coifman and Meyer: for $0 \le \delta \le \rho \le 1$, $\delta < 1$ and m = 0 it is enough to have $N, N' > \frac{d}{2}$ to obtain the continuity on $L^2(\mathbf{R}^d)$.

Also, in the smooth case we have the following necessary and sufficient condition for the continuity on $L^p({\bf R}^d)$ spaces:

$$m \le -d(1-\rho) \Big| \frac{1}{2} - \frac{1}{p} \Big| .$$

[Benedek, Panzone (1961)]

 $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is a space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

[Benedek, Panzone (1961)]

 $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is a space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

If $p_i = \infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $L^{\mathbf{p}}(\mathbf{R}^d)$ is a Banach space.

[Benedek, Panzone (1961)]

 $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is a space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

If $p_i = \infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $L^{\mathbf{p}}(\mathbf{R}^d)$ is a Banach space.

$$\mathbf{p}' = (p'_1, \dots, p'_d), \quad \frac{1}{p_i} + \frac{1}{p'_i} = 1$$

[Benedek, Panzone (1961)]

 $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in [1,\infty)^d$ is a space of measurable complex functions f on \mathbf{R}^d ,

$$||f||_{\mathbf{p}} = \left(\int \cdots \left(\int \left(\int |f(x_1, \dots, x_d)|^{p_1} dx_1\right)^{\frac{p_2}{p_1}} dx_2\right)^{\frac{p_3}{p_2}} \cdots dx_d\right)^{\frac{1}{p_d}} < \infty.$$

If $p_i = \infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $L^{\mathbf{p}}(\mathbf{R}^d)$ is a Banach space.

$$\mathbf{p}' = (p'_1, \dots, p'_d), \quad \frac{1}{p_i} + \frac{1}{p'_i} = 1$$

Some facts:

- (a) $\mathcal{S} \hookrightarrow L^{\mathbf{p}}(\mathbf{R}^d)$,
- (b) S is dense in $L^{\mathbf{p}}(\mathbf{R}^d)$, for $\mathbf{p} \in [1, \infty)^d$,
- (c) $L^{\mathbf{p}'}(\mathbf{R}^d)$ is topological dual of $L^{\mathbf{p}}(\mathbf{R}^d)$, for $\mathbf{p} \in [1, \infty)^d$,
- (d) $L^{\mathbf{p}}(\mathbf{R}^d) \hookrightarrow \mathcal{S}'$.

Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for $L^{\mathbf{p}}(\mathbf{R}^d)$ spaces, $\mathbf{p} \in [1, \infty)^d$) Let (f_n) be a sequence of measurable functions. If $f_n \longrightarrow f$ (ae), and if there exists $G \in L^{\mathbf{p}}(\mathbf{R}^d)$ such that $|f_n| \leqslant G$ (ae), $n \in \mathbf{N}$, then $||f_n - f||_{\mathbf{p}} \longrightarrow 0$.

Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for $L^{\mathbf{p}}(\mathbf{R}^d)$ spaces, $\mathbf{p} \in [1, \infty)^d$) Let (f_n) be a sequence of measurable functions. If $f_n \longrightarrow f$ (ae), and if there exists $G \in L^{\mathbf{p}}(\mathbf{R}^d)$ such that $|f_n| \leq G$ (ae), $n \in \mathbf{N}$, then $||f_n - f||_{\mathbf{p}} \longrightarrow 0$.

Theorem 2. (Minkowski inequality for integrals) For $\mathbf{p} \in [1,\infty]^{d_1}$ and $f \in L^{(\mathbf{p},1,\dots,1)}(\mathbf{R}^{d_1+d_2})$ we have

$$\left\| \int_{\mathbf{R}^{d_2}} f(\mathbf{x}, \mathbf{y}) \, d\mathbf{y} \right\|_{\mathbf{p}} \leqslant \int_{\mathbf{R}^{d_2}} \left\| f(\cdot, \mathbf{y}) \right\|_{\mathbf{p}} d\mathbf{y}.$$

Basic results (cont.)

Theorem 3. (Hölder inequality) For $\mathbf{p} \in [1, \infty]^d$ we have

$$\left| \int_{\mathbf{R}^d} f(\mathbf{x}) g(\mathbf{x}) \, d\mathbf{x} \right| \leqslant \|f\|_{\mathbf{p}} \|g\|_{\mathbf{p}'}.$$

Basic results (cont.)

Theorem 3. (Hölder inequality) For $\mathbf{p} \in [1, \infty]^d$ we have

$$\left| \int_{\mathbf{R}^d} f(\mathbf{x}) g(\mathbf{x}) \, d\mathbf{x} \right| \leqslant \|f\|_{\mathbf{p}} \|g\|_{\mathbf{p}'}.$$

[Benedek, Panzone] proved a converse of Theorem 3:

Theorem 4. For $\mathbf{p} \in \langle 1, \infty |^d$ it follows

$$\|f\|_{\mathbf{p}} = \sup_{g \in \mathcal{S}_{\mathbf{p}'}} \left| \int \!\! f \bar{g} \, d\mathbf{x} \right| = \sup_{g \in \mathcal{S}_{\mathbf{p}'} \cap \mathcal{S}} \left| \int \!\! f \bar{g} \, d\mathbf{x} \right|,$$

where $S_{\mathbf{p}'}$ is a unit sphere in $L^{\mathbf{p}'}(\mathbf{R}^d)$.

Fourier multipliers

Theorem 5. Let $m \in L^{\infty}(\mathbf{R}^d \setminus \{0\})$ be such that for some A > 0, and each $|\alpha| \leq \lceil \frac{d}{2} \rceil + 1$ we have either

(a) Mihlin condition

$$|\partial_{\pmb{\xi}}^{\pmb{\alpha}} m(\pmb{\xi})| \leqslant A |\pmb{\xi}|^{-|\pmb{\alpha}|} \quad , \ \, \text{or} \quad \, \,$$

(b) Hörmander condition

$$\sup_{R>0} R^{-d+2|\alpha|} \int_{R<|\boldsymbol{\xi}|<2R} \left|\partial_{\boldsymbol{\xi}}^{\alpha} m(\boldsymbol{\xi})\right|^2 d\boldsymbol{\xi} \leqslant A^2 < \infty \; .$$

Fourier multipliers

Theorem 5. Let $m \in L^{\infty}(\mathbf{R}^d \setminus \{0\})$ be such that for some A > 0, and each $|\alpha| \leq \lfloor \frac{d}{2} \rfloor + 1$ we have either

(a) Mihlin condition

$$|\partial_{\pmb{\xi}}^{\pmb{\alpha}} m(\pmb{\xi})| \leqslant A |\pmb{\xi}|^{-|\pmb{\alpha}|} \quad , \ \, \text{or} \quad \, \,$$

(b) Hörmander condition

$$\sup_{R>0} R^{-d+2|\alpha|} \int_{R<|\boldsymbol{\xi}|<2R} \left|\partial_{\boldsymbol{\xi}}^{\alpha} m(\boldsymbol{\xi})\right|^2 d\boldsymbol{\xi} \leqslant A^2 < \infty .$$

Then m belongs to $\mathcal{M}_{\mathbf{p}}$, for each $\mathbf{p} \in \langle 1, \infty \rangle^d$, and we have

$$||m||_{\mathcal{M}_{\mathbf{p}}} \leq \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max(p_{d-j}, (p_{d-j} - 1)^{-1/p_{d-j}}) (A + ||m||_{L^{\infty}})$$

$$\leq c' \prod_{j=0}^{d-1} \max(p_{d-j}, (p_{d-j} - 1)^{-1/p_{d-j}}) (A + ||m||_{L^{\infty}}),$$

where c and c' depend only on d.

Generalization of the Marcinkiewicz interpolation theorem

Take $l\in\{0,\dots,(d-1)\}$ and split $x=(\bar{x},x')=(x_1,\dots,x_l;x_{l+1},\dots,x_d).$ Next define $\|f\|_{\bar{\mathbf{p}},\,p}=\|f\|_{(\bar{\mathbf{p}},\,p,\dots,\,p)}$ and also a distribution function:

$$\lambda_f(\alpha) = \lambda(f; \alpha) = \text{vol}\{\mathbf{x} \in \mathbf{R}^d : |f(\mathbf{x})| > \alpha\}.$$

Generalization of the Marcinkiewicz interpolation theorem

Take $l\in\{0,\ldots,(d-1)\}$ and split $x=(\bar{x},x')=(x_1,\ldots,x_l;x_{l+1},\ldots,x_d).$ Next define $\|f\|_{\bar{\mathbf{p}},\,p}=\|f\|_{(\bar{\mathbf{p}},\,p,\ldots,\,p)}$ and also a distribution function:

$$\lambda_f(\alpha) = \lambda(f; \alpha) = \text{vol}\{\mathbf{x} \in \mathbf{R}^d : |f(\mathbf{x})| > \alpha\}.$$

Lemma 1. Assume that for a linear operator $T: L_c^{\infty}(\mathbf{R}^d) \to L_{loc}^1(\mathbf{R}^d)$, and some $\bar{\mathbf{p}} \in \langle 1, \infty \rangle^m$ and $q \in \langle 1, \infty \rangle$ there exist $c_1, c_q > 0$ such that for an arbitrary $\alpha > 0$ and $f \in \mathrm{L}_c^{\infty}(\mathbf{R}^d)$ we have:

$$\lambda(\|Tf\|_{\bar{\mathbf{p}}};\alpha) \leqslant c_1 \alpha^{-1} \|f\|_{\bar{\mathbf{p}},1},$$

$$\|Tf\|_{\bar{\mathbf{p}},q} \leqslant c_q \|f\|_{\bar{\mathbf{p}},q}.$$

Then for an arbitrary $p \in \langle 1, q \rangle$ and $f \in C_c^{\infty}(\mathbf{R}^d)$ it follows

$$||Tf||_{\bar{\mathbf{p}}, p} \leq 8(p-1)^{-\frac{1}{p}}(c_1+c_q)||f||_{\bar{\mathbf{p}}, p}.$$

The Caldéron-Zygmund decomposition

The first assumption of the previous lemma could be omitted (under the assumptions of the Hörmander-Mihlin theorem) using the next lemma, where a dyadic cube in \mathbf{R}^d is a product of semi-open intervals, i.e. the set of the form (for $k, m_1, \ldots, m_d \in \mathbf{Z}$)

$$[2^k m_1, 2^k (m_1 + 1)) \times \cdots \times [2^k m_d, 2^k (m_d + 1))$$
.

The Caldéron-Zygmund decomposition

The first assumption of the previous lemma could be omitted (under the assumptions of the Hörmander-Mihlin theorem) using the next lemma, where a dyadic cube in \mathbf{R}^d is a product of semi-open intervals, i.e. the set of the form (for $k, m_1, \ldots, m_d \in \mathbf{Z}$)

$$[2^k m_1, 2^k (m_1 + 1)) \times \cdots \times [2^k m_d, 2^k (m_d + 1))$$
.

Lemma 2. Let $f \in L^1(\mathbf{R}^d)$ and $\alpha > 0$. Then there exist functions g and b on \mathbf{R}^d satisfying:

- a) f = g + b,
- b) $\|g\|_{\mathrm{L}^{1}} \leqslant \|f\|_{\mathrm{L}^{1}}$ and $\|g\|_{\mathrm{L}^{\infty}} \leqslant 2^{d} \alpha$,
- c) $b = \sum_{k=1}^{\infty} b_k$, where each b_k is supported in a dyadic cube Q_k $(Q_j \cap Q_k = \emptyset)$ for $j \neq k$,
- d) $\int_{Q_k} b_k(\mathbf{x}) d\mathbf{x} = 0$,
- e) $\|b_k\|_{\mathrm{L}^1} \leqslant 2^{d+1} \alpha \operatorname{vol} Q_k$, and
- f) $\sum_{k=1}^{\infty} \operatorname{vol} Q_k \leqslant \alpha^{-1} ||f||_{\mathbf{L}^1}$.

The first Ψ DO result

Theorem 6. Let $\sigma \in S^0_{1,0}$, with compact support in x. Then T_σ is bounded on $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in \langle 1, \infty \rangle^d$.

The general framework

We define (for each t > 0 and $y' \in \mathbf{R}^{d-l}$):

$$\mathcal{F}_{l,t}^{y'} \!\!:= \! \left\{ f \!\in\! L^1_{loc}(\mathbf{R}^d) \!:\! \operatorname{supp} f \!\subseteq\! \mathbf{R}^l \times \{x' \!:\! |x' - y'|_\infty \!\leq\! t\} \ \, \& \ \, \int_{\mathbf{R}^d - l} f(\bar{x}, x') \, dx' \!=\! 0 \, \left(\operatorname{ae} \, \bar{x} \!\in\! \mathbf{R}^l \right) \right\}.$$

The general framework

We define (for each t > 0 and $y' \in \mathbf{R}^{d-l}$):

$$\mathcal{F}_{l,t}^{y'} := \left\{ f \in L_{loc}^1(\mathbf{R}^d) : \operatorname{supp} f \subseteq \mathbf{R}^l \times \{x' : |x'-y'|_\infty \le t\} \quad \& \quad \int_{\mathbf{R}^{d-l}} f(\bar{x},x') \; dx' = 0 \text{ (ae } \bar{x} \in \mathbf{R}^l) \right\}.$$

Theorem 7. Assume that $A,A^*:L_c^\infty(\mathbf{R}^d)\to L_{loc}^1(\mathbf{R}^d)$ are formally adjoint linear operators, i.e. such that

$$(\forall \varphi, \psi \in C_c^{\infty}(\mathbf{R}^d)) \quad \int_{\mathbf{R}^d} (A\varphi) \overline{\psi} = \int_{\mathbf{R}^d} \varphi \overline{A^* \psi}.$$

Furthermore, let us assume that (both for T=A and $T=A^*$) there exist constants N>1 and $c_1>0$ satisfying

$$(\forall l \in \{0, \dots, (d-1)\})(\forall x'_0 \in \mathbf{R}^{d-l})(\forall t > 0)$$

$$\int_{|x'-x'_0|_{\infty} > Nt} ||Tf(\cdot, x')||_{\bar{\mathbf{p}}} dx' \le c_1 ||f||_{\bar{\mathbf{p}}, 1},$$

for any function $f \in L^\infty_c(\mathbf{R}^d) \cap \mathcal{F}^{x_0'}_{l,t}$ and any $\bar{\mathbf{p}} \in \langle 1, \infty \rangle^l$.

Theorem 7. If for some $q \in \langle 1, \infty \rangle$ an operator A has a continuous extension to an operator from $L^q(\mathbf{R}^d)$ to itself with the norm c_q , then A can be extended by the continuity to an operator from $L^\mathbf{p}(\mathbf{R}^d)$ to itself for any $\mathbf{p} \in \langle 1, \infty \rangle^d$, with the norm

$$||A||_{L_{P\to L_{P}}} \le \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max(p_{d-j}, (p_{d-j}-1)^{-1/p_{d-j}})(c_{1}+c_{q})$$

$$\le c' \prod_{j=0}^{d-1} \max(p_{d-j}, (p_{d-j}-1)^{-1/p_{d-j}})(c_{1}+c_{q}),$$

where c and c^\prime are constants depending only on N and d.

The second ΨDO result

Theorem 8. Let $\sigma \in S^0_{1,\delta}$, $\delta \in [0,1)$. Then T_{σ} is bounded on $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in \langle 1, \infty \rangle^d$.

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \, d\mathbf{y}$$

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \, d\mathbf{y}$$

Continuity on $L^p(\mathbf{R}^d)$, $p \in [1, \infty]$ (Schur):

$$(\exists C > 0) \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{x} < C \text{ (ae } \mathbf{y}), \quad \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{y} < C \text{ (ae } \mathbf{x}).$$

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

Continuity on $L^p(\mathbf{R}^d)$, $p \in [1, \infty]$ (Schur):

$$(\exists \, C > 0) \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| \, d\mathbf{x} < C \; (\text{ae } \mathbf{y}), \quad \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| \, d\mathbf{y} < C \; (\text{ae } \mathbf{x}).$$

Sufficient conditions for continuity on $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in \langle 1, \infty \rangle^d$:

$$\int_{\mathbf{R}^d} \|K(\cdot, \cdot - \mathbf{z})\|_{L^\infty} \, d\mathbf{z} < \infty, \quad \int_{\mathbf{R}^d} \|K(\cdot - \mathbf{z}, \cdot)\|_{L^\infty} \, d\mathbf{z} < \infty.$$

$$Tf(\mathbf{x}) = \int_{\mathbf{R}^d} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d\mathbf{y}$$

Continuity on $L^p(\mathbf{R}^d)$, $p \in [1, \infty]$ (Schur):

$$(\exists C > 0) \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{x} < C \text{ (ae } \mathbf{y}), \quad \int_{\mathbf{R}^d} |K(\mathbf{x}, \mathbf{y})| d\mathbf{y} < C \text{ (ae } \mathbf{x}).$$

Sufficient conditions for continuity on $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in \langle 1, \infty \rangle^d$:

$$\int_{\mathbf{R}^d} \|K(\cdot, \cdot - \mathbf{z})\|_{L^\infty} \, d\mathbf{z} < \infty, \quad \int_{\mathbf{R}^d} \|K(\cdot - \mathbf{z}, \cdot)\|_{L^\infty} \, d\mathbf{z} < \infty.$$

The connection between those conditions =?

Properties of the kernel

We have $\sigma(x,\cdot)\in\mathcal{S}'(\mathbf{R}^d)$ and so there is a $k(x,\cdot)\in\mathcal{S}'(\mathbf{R}^d)$ such that $\widehat{k(x,\cdot)}=\sigma(x,\cdot)$. Then we can write

$$T_{\sigma}\varphi(x) = k(x,\cdot) * \varphi.$$

Properties of the kernel

We have $\sigma(x,\cdot)\in\mathcal{S}'(\mathbf{R}^d)$ and so there is a $k(x,\cdot)\in\mathcal{S}'(\mathbf{R}^d)$ such that $\widehat{k(x,\cdot)}=\sigma(x,\cdot)$. Then we can write

$$T_{\sigma}\varphi(x) = k(x,\cdot) * \varphi$$
.

Lemma 3. Let $\sigma \in S^m_{\rho,\delta,N,N'}$, $\rho > 0$. Then the kernel k(x,z) satisfies

$$|\partial_x^{\alpha} \partial_z^{\beta} k(x,z)| \le C_{\alpha,\beta,L} \cdot |z|^{-d-m-\delta|\alpha|-|\beta|-L}, \quad z \ne 0,$$

for all $|\alpha| \leq N$, $|\beta| \geq 0$ and

$$L \ge (1 - \rho) \left(\left\lfloor \frac{d + m + \delta |\alpha| + |\beta|}{\rho} \right\rfloor + 1 \right)^+$$

such that $N' \geq d+m+\delta|\alpha|+|\beta|+L>0$ and $N'>\frac{d+m+\delta|\alpha|+|\beta|}{\rho}$, and where $C_{\alpha,\beta,L}$ is a constant depending only on α,β and L.

The newest ΨDO result

Theorem 9. Let $\sigma \in S^m_{\rho,\delta,N,N'}$, $[0,1) \ni \delta \leq \rho \in \langle 0,1]$ and

$$m \le -(1-\rho)(d+1+\rho).$$

lf

$$N > \frac{(3-\delta)d + (5-\delta)(1-\delta)}{(1-\delta)^2}, \quad N' > 6d + 12\,,$$

then T_{σ} is bounded on $L^{\mathbf{p}}(\mathbf{R}^d)$, $\mathbf{p} \in \langle 1, \infty \rangle^d$.