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Symbols and operators

Sys ot - for la] <N, |B] < N it holds

(¥ € RY)(VE € RY) (0507 0(2,€)| < Cap(g)™ 171"
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where (£) = (1+[¢[?)*

norm: [o|™) = max up 10508 o (2,6)|
" N,N’ Bl+3s
|a\<N\5\<N'I§ERd €ym= BT

For o € S5 n,n+ We denote the corresponding pseudodifferential operator 7;,
by

Tooa) = [ €40, 09(€) dé. o € SR,

where d¢ = (27)~4dE.



Known continuity results

Our starting point is a famous result by Coifman and Meyer:
for 0<6<p<16<1andm=0itis enough to have N,N' > ¢
to obtain the continuity on L?(R%).



Known continuity results

Our starting point is a famous result by Coifman and Meyer:
for 0<6<p<16<1andm=0itis enough to have N,N' > ¢
to obtain the continuity on L?(R%).

Also, in the smooth case we have the following necessary and sufficient
condition for the continuity on L?(R?) spaces:
1 1
< —d(1—-p)|= - 7’ .
m < —d(1-p)|5 »



Mixed-norm Lebesgue spaces

[BENEDEK, PANZONE (1961)]

LP(R?Y), p € [1,00)% is a space of measurable complex functions f on R,
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Mixed-norm Lebesgue spaces

[BENEDEK, PANZONE (1961)]
LP(R?Y), p € [1,00)% is a space of measurable complex functions f on R,

= (o ([ firton o an) ™ ae2) ™ o) <

If p; = oo, analogously. || - ||, is a norm and LP(R?) is a Banach space.

’ / / 1 1
P = (P1,---,Pa) o T =1
Some facts:
(a) S — LP(RY),
(b) S is dense in LP(R%), for p € [1,00)¢,
(c) Lp,(Rd) is topological dual of LP(R?), for p € [1,00)¢,
(d) LP(RY) — &'.



Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for LP(R) spaces, p € [1,00)?) Let
(fn) be a sequence of measurable functions. If f,, — f (ae), and if there

exists G € LP(R?) such that |f,| < G (ae), n € N, then ||f, — fllp—0.



Basic results

We use some generalizations of classical results:

Theorem 1. (dominated convergence for LP(R) spaces, p € [1,00)?) Let
(fn) be a sequence of measurable functions. If f,, — f (ae), and if there

exists G € LP(R?) such that |f,| < G (ae), n € N, then ||f, — fllp—0.

Theorem 2. (Minkowski inequality for integrals) For p € [1,00]% and
fe L@l (RA+2) we have

|, teewas] < [ sy,



Basic results (cont.)

Theorem 3. (Holder inequality) For p € [1,00]¢ we have
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Basic results (cont.)

Theorem 3. (Holder inequality) For p € [1,00]¢ we have

[ 16g0ax] < 171, gl
R4

[BENEDEK, PANZONE] proved a converse of Theorem 3:

Theorem 4. For p € (1,00]% it follows

/fgdx): sup ‘/fgdx
9€SLINS

where Sy is a unit sphere in i (R%).

’

ll, = sup
11, = s



Fourier multipliers

Theorem 5. Let m € L°°(R¥\{0}) be such that for some A > 0, and each
la| < [4] 4+ 1 we have either
(a) Mihlin condition

08 m(&)| < Algl™*, or

(b) Hérmander condition

sup R ~42lel / |0Em(€)]* dé < A* < o0 .
R>0 R<|¢|<2R



Fourier multipliers

Theorem 5. Let m € L°°(R¥\{0}) be such that for some A > 0, and each
la| < [4] 4+ 1 we have either
(a) Mihlin condition
08 m(&)| < Algl™*, or
(b) Hérmander condition

sup R ~42lel / |0Em(€)]* dé < A* < o0 .
R>0 R<|¢|<2R

Then m belongs to My, for each p € (1,00)%, and we have

d —
] ey, < Z H max(pa—s, (pa—y — 1)7/P49) (A + [[m]l o)
k=1  j=0

d—1
¢ T[ max(pa—s, (pa—y — 1)"/74=3) (A + [ml| )

Jj=0

where c and ¢ depend only on d.



Generalization of the Marcinkiewicz interpolation theorem

Take I € {0,...,(d — 1)} and split z = (Z,2") = (z1, ..., T1; Ti41, -+ -, Td)-
Next define || f|l5,» = | fll(5, p,..., ») and also a distribution function:

(@) = A(f; @) = vol{x € R : | f(x)| > a}.



Generalization of the Marcinkiewicz interpolation theorem

Take I € {0,...,(d — 1)} and split z = (Z,2") = (z1, ..., T1; Ti41, -+ -, Td)-
Next define || f|l5,» = | fll(5, p,..., ») and also a distribution function:

(@) = A(f; @) = vol{x € R : | f(x)| > a}.

Lemma 1. Assume that for a linear operator T : L2°(R?%) — Li,.(R?), and
some p € (1,00)™ and q € (1,00) there exist c1,cq > 0 such that for an
arbitrary a > 0 and f € L= (R?) we have:

AT 5 @)
ITf]

Then for an arbitrary p € (1,q) and f € C(R?) it follows

cra” | f]

<
< cqllf]

P17

P.q P, q’

_1
ITfllp,, <8(p—1)"7(cr +c)llfll, -



The Caldéron-Zygmund decomposition

The first assumption of the previous lemma could be omitted (under the
assumptions of the Hérmander-Mihlin theorem) using the next lemma, where a
dyadic cube in R% is a product of semi-open intervals, i.e. the set of the form
(for k,ma,...,mq € Z)

[28my, 28 (ma + 1)) x -+ x [28ma, 28 (ma + 1)) .



The Caldéron-Zygmund decomposition

The first assumption of the previous lemma could be omitted (under the
assumptions of the Hérmander-Mihlin theorem) using the next lemma, where a
dyadic cube in R% is a product of semi-open intervals, i.e. the set of the form
(for k,ma,...,mq € Z)

[28my, 28 (ma + 1)) x -+ x [28ma, 28 (ma + 1)) .

Lemma 2. Let f € L'(R%) and a > 0. Then there exist functions g and b on
R? satisfying:

a) f=g+b,

b) llglls <I1fllpa and [lgllp < 2%,

c) b=73 12, br, where each by, is supported in a dyadic cube Qi (Q; NQr =10
for j # k),

d) ka br(x)dx =0,

e) ||brllr < 291 volQr, and

f) oo volQk < a”tIf|

Ll-



The first WDO result

Theorem 6. Let o € S?,o: with compact support in . Then T, is bounded on

LP(R), p € (1,00)". .



The general framework

We define (for each t > 0 and 3 € R*™):

’
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The general framework

We define (for each t > 0 and 3 € R*™):

’
F}ftrZ{feLz,loc(Rd)rsupp FCR (@10’ —y |0 <t} & [pa—1 f(Z,2') dz'=0 (ae a‘:eRH} .

Theorem 7. Assume that A, A* : L=®(R%) — L,.(R?) are formally adjoint
linear operators, i.e. such that

Vouvecr®Y) [ (o= [ oA

Furthermore, let us assume that (both for T'= A and T = A*) there exist
constants N > 1 and c¢; > 0 satisfying

(V1ed{0,..,(d=1D))(Vzy e RTHVE > 0)

ITF(-2")pdz’ < crllfllpn

|2/ —z{]oo >Nt

for any function f € L (R%) N }'lzf and any p € (1,00)".



The general framework - cont.

Theorem 7. If for some q € (1,00) an operator A has a continuous extension
to an operator from L4(R?) to itself with the norm c,, then A can be
extended by the continuity to an operator from LP(R?) to itself for any

p € (1,00)¢, with the norm

d k—1
lAllzp—ze < ch H max(pa_j, (pa—; — 1) P4=3) (1 + ¢q)
k=1  j=0
d—1
< ¢ [ max(pa—s, (pazy — 1)7749)(e1 + cq),
Jj=0

where ¢ and ¢’ are constants depending only on N and d.



The second DO result

Theorem 8. Let o € SV, 6 € [0,1). Then T, is bounded on LP(R?),
p € (1,00)"



Integral operators

Tf(x)= K(x,y)f(y)dy

R4
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Integral operators

Tf(x)= K(x,y)f(y)dy

R4

Continuity on L?(R?), p € [1,00] (Schur):

(HC>0)/

R4

|K(x,y)|dx < C (ae y), /Rd |K(x,y)|dy < C (ae x).

Sufficient conditions for continuity on LP(R?), p € (1,00)%:

/Rd||K(~,~—z)HLoodz<oo, /Rd |K(-—2,-)| e dz < 0.

The connection between those conditions = ?



Properties of the kernel

We have o(z,-) € S'(R?) and so there is a k(z,-) € S'(R?) such that

—

k(z,-) = o(z,-). Then we can write

Top(z) = k(z,) x .



Properties of the kernel

We have o(z,-) € S'(R?) and so there is a k(z,-) € S'(R?) such that

—

k(z,-) = o(z,-). Then we can write

Top(z) = k(z,) x .

Lemma 3. Let o € S]'s v nv, p > 0. Then the kernel k(z, z) satisfies
10202 k(, 2)| < Capr-|2| 77" 70lI7AE 220,

for all |a| < N,

Bl >0 and

d+m+;§|a\+|,3|J +1)+

L> (1—0)({

such that N' > d+m +8|a| + 8|+ L > 0 and N' > LmHIalHPL and where

Ca,p,1 is a constant depending only on a, 3 and L. .



The newest WDO result

Theorem 9. Let o € S)'5 vy v, [0,1) 35 < p € (0,1] and
m< —(1-p)d+1+p).
If
(3—0)d+ (5—0d)(1—4)
(1-4)? ’
then T, is bounded on LP(R%), p € (1, 00)¢.

N > N' > 6d+12,
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