Bounded operators on mixed-norm Lebesgue spaces

Ivan Ivec

Faculty of Metallurgy University of Zagreb

IWOTA 2022
Kraków, September 6-10, 2022.

Joint work with Nenad Antonić and Ivana Vojnović

HrZZ
 Croatian Science
 Foundation

Pseudodifferential operators

Mixed-norm Lebesgue spaces

Hörmander-Mihlin theorem

Continuity of linear operators on mixed-norm Lebesgue spaces

Symbols and operators

$$
\begin{aligned}
& S_{\rho, \delta, N, N^{\prime}}^{m} \ldots \text { for }|\alpha| \leq N,|\beta| \leq N^{\prime} \text { it holds } \\
& \qquad\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|},
\end{aligned}
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$
norm: $|\sigma|_{N, N^{\prime}}^{(m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|}}$

Symbols and operators

$S_{\rho, \delta, N, N^{\prime}}^{m} \ldots$ for $|\alpha| \leq N,|\beta| \leq N^{\prime}$ it holds

$$
\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|},
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$
norm: $|\sigma|_{N, N^{\prime}}^{(m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|}}$
For $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$ we denote the corresponding pseudodifferential operator T_{σ} by

$$
T_{\sigma} \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) d \xi, \varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

where $d \xi=(2 \pi)^{-d} d \xi$.

Known continuity results

Our starting point is a famous result by Coifman and Meyer: for $0 \leq \delta \leq \rho \leq 1, \delta<1$ and $m=0$ it is enough to have $N, N^{\prime}>\frac{d}{2}$ to obtain the continuity on $L^{2}\left(\mathbf{R}^{d}\right)$.

Known continuity results

Our starting point is a famous result by Coifman and Meyer: for $0 \leq \delta \leq \rho \leq 1, \delta<1$ and $m=0$ it is enough to have $N, N^{\prime}>\frac{d}{2}$ to obtain the continuity on $L^{2}\left(\mathbf{R}^{d}\right)$.

Also, in the smooth case we have the following necessary and sufficient condition for the continuity on $L^{p}\left(\mathbf{R}^{d}\right)$ spaces:

$$
m \leq-d(1-\rho)\left|\frac{1}{2}-\frac{1}{p}\right|
$$

Mixed-norm Lebesgue spaces

[Benedek, Panzone (1961)]
$L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in[1, \infty)^{d}$ is a space of measurable complex functions f on \mathbf{R}^{d},

$$
\|f\|_{\mathbf{p}}=\left(\int \cdots\left(\int\left(\int\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{\frac{p_{2}}{p_{1}}} d x_{2}\right)^{\frac{p_{3}}{p_{2}}} \cdots d x_{d}\right)^{\frac{1}{p_{d}}}<\infty .
$$

Mixed-norm Lebesgue spaces

[Benedek, Panzone (1961)]
$L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in[1, \infty)^{d}$ is a space of measurable complex functions f on \mathbf{R}^{d},

$$
\|f\|_{\mathbf{p}}=\left(\int \cdots\left(\int\left(\int\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{\frac{p_{2}}{p_{1}}} d x_{2}\right)^{\frac{p_{3}}{p_{2}}} \cdots d x_{d}\right)^{\frac{1}{p_{d}}}<\infty .
$$

If $p_{i}=\infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $L^{\mathbf{P}}\left(\mathbf{R}^{d}\right)$ is a Banach space.

Mixed-norm Lebesgue spaces

[Benedek, Panzone (1961)]
$L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in[1, \infty)^{d}$ is a space of measurable complex functions f on \mathbf{R}^{d},

$$
\|f\|_{\mathbf{p}}=\left(\int \cdots\left(\int\left(\int\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{\frac{p_{2}}{p_{1}}} d x_{2}\right)^{\frac{p_{3}}{p_{2}}} \cdots d x_{d}\right)^{\frac{1}{p_{d}}}<\infty .
$$

If $p_{i}=\infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $L^{\mathbf{P}}\left(\mathbf{R}^{d}\right)$ is a Banach space.

$$
\mathbf{p}^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{d}^{\prime}\right), \quad \frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1
$$

Mixed-norm Lebesgue spaces

[Benedek, Panzone (1961)]
$L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in[1, \infty)^{d}$ is a space of measurable complex functions f on \mathbf{R}^{d},

$$
\|f\|_{\mathbf{p}}=\left(\int \cdots\left(\int\left(\int\left|f\left(x_{1}, \ldots, x_{d}\right)\right|^{p_{1}} d x_{1}\right)^{\frac{p_{2}}{p_{1}}} d x_{2}\right)^{\frac{p_{3}}{p_{2}}} \cdots d x_{d}\right)^{\frac{1}{p_{d}}}<\infty .
$$

If $p_{i}=\infty$, analogously. $\|\cdot\|_{\mathbf{p}}$ is a norm and $L^{\mathbf{P}}\left(\mathbf{R}^{d}\right)$ is a Banach space.

$$
\mathbf{p}^{\prime}=\left(p_{1}^{\prime}, \ldots, p_{d}^{\prime}\right), \quad \frac{1}{p_{i}}+\frac{1}{p_{i}^{\prime}}=1
$$

Some facts:
(a) $\mathcal{S} \hookrightarrow L^{\mathrm{p}}\left(\mathbf{R}^{d}\right)$,
(b) \mathcal{S} is dense in $L^{\mathrm{p}}\left(\mathbf{R}^{d}\right)$, for $\mathbf{p} \in[1, \infty\rangle^{d}$,
(c) $L^{\mathbf{p}^{\prime}}\left(\mathbf{R}^{d}\right)$ is topological dual of $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$, for $\mathbf{p} \in[1, \infty)^{d}$,
(d) $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right) \hookrightarrow \mathcal{S}^{\prime}$.

Basic results

We use some generalizations of classical results:
Theorem 1. (dominated convergence for $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ spaces, $\left.\mathbf{p} \in[1, \infty)^{d}\right)$ Let $\left(f_{n}\right)$ be a sequence of measurable functions. If $f_{n} \longrightarrow f(\mathrm{ae})$, and if there exists $G \in L^{\mathbf{P}}\left(\mathbf{R}^{d}\right)$ such that $\left|f_{n}\right| \leqslant G($ ae $), n \in \mathbf{N}$, then $\left\|f_{n}-f\right\|_{\mathbf{p}} \longrightarrow 0$.

Basic results

We use some generalizations of classical results:
Theorem 1. (dominated convergence for $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ spaces, $\left.\mathbf{p} \in[1, \infty\rangle^{d}\right)$ Let $\left(f_{n}\right)$ be a sequence of measurable functions. If $f_{n} \longrightarrow f(\mathrm{ae})$, and if there exists $G \in L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ such that $\left|f_{n}\right| \leqslant G($ ae $), n \in \mathbf{N}$, then $\left\|f_{n}-f\right\|_{\mathbf{p}} \longrightarrow 0$.

Theorem 2. (Minkowski inequality for integrals) For $\mathbf{p} \in[1, \infty]^{d_{1}}$ and $f \in L^{(\mathbf{p}, 1, \ldots, 1)}\left(\mathbf{R}^{d_{1}+d_{2}}\right)$ we have

$$
\left\|\int_{\mathbf{R}^{d_{2}}} f(\mathbf{x}, \mathbf{y}) d \mathbf{y}\right\|_{\mathbf{p}} \leqslant \int_{\mathbf{R}^{d_{2}}}\|f(\cdot, \mathbf{y})\|_{\mathbf{p}} d \mathbf{y}
$$

Basic results (cont.)

Theorem 3. (Hölder inequality) For $\mathbf{p} \in[1, \infty]^{d}$ we have

$$
\left|\int_{\mathbf{R}^{d}} f(\mathbf{x}) g(\mathbf{x}) d \mathbf{x}\right| \leqslant\|f\|_{\mathbf{p}}\|g\|_{\mathbf{p}^{\prime}} .
$$

Basic results (cont.)

Theorem 3. (Hölder inequality) For $\mathbf{p} \in[1, \infty]^{d}$ we have

$$
\left|\int_{\mathbf{R}^{d}} f(\mathbf{x}) g(\mathbf{x}) d \mathbf{x}\right| \leqslant\|f\|_{\mathbf{p}}\|g\|_{\mathbf{p}^{\prime}} .
$$

[Benedek, Panzone] proved a converse of Theorem 3:
Theorem 4. For $\mathbf{p} \in\langle 1, \infty]^{d}$ it follows

$$
\|f\|_{\mathbf{p}}=\sup _{g \in \mathrm{~S}_{\mathbf{p}^{\prime}}}\left|\int f \bar{g} d \mathbf{x}\right|=\sup _{g \in \mathrm{~S}_{\mathbf{p}^{\prime} \cap \mathcal{S}}}\left|\int f \bar{g} d \mathbf{x}\right|,
$$

where $\mathrm{S}_{\mathbf{p}^{\prime}}$ is a unit sphere in $L^{\mathbf{p}^{\prime}}\left(\mathbf{R}^{d}\right)$.

Fourier multipliers

Theorem 5. Let $m \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d} \backslash\{0\}\right)$ be such that for some $A>0$, and each $|\boldsymbol{\alpha}| \leqslant\left[\frac{d}{2}\right]+1$ we have either
(a) Mihlin condition

$$
\left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right| \leqslant A|\boldsymbol{\xi}|^{-|\boldsymbol{\alpha}|} \quad \text {, or }
$$

(b) Hörmander condition

$$
\sup _{R>0} R^{-d+2|\boldsymbol{\alpha}|} \int_{R<|\boldsymbol{\xi}|<2 R}\left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant A^{2}<\infty .
$$

Fourier multipliers

Theorem 5. Let $m \in \mathrm{~L}^{\infty}\left(\mathbf{R}^{d} \backslash\{0\}\right)$ be such that for some $A>0$, and each $|\boldsymbol{\alpha}| \leqslant\left[\frac{d}{2}\right]+1$ we have either
(a) Mihlin condition

$$
\left|\partial_{\xi}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right| \leqslant A|\boldsymbol{\xi}|^{-|\boldsymbol{\alpha}|} \quad \text {, or }
$$

(b) Hörmander condition

$$
\sup _{R>0} R^{-d+2|\boldsymbol{\alpha}|} \int_{R<|\boldsymbol{\xi}|<2 R}\left|\partial_{\boldsymbol{\xi}}^{\boldsymbol{\alpha}} m(\boldsymbol{\xi})\right|^{2} d \boldsymbol{\xi} \leqslant A^{2}<\infty
$$

Then m belongs to $\mathcal{M}_{\mathbf{p}}$, for each $\mathbf{p} \in\langle 1, \infty\rangle^{d}$, and we have

$$
\begin{aligned}
\|m\|_{\mathcal{M}_{\mathbf{p}}} & \leqslant \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(A+\|m\|_{\mathrm{L}^{\infty}}\right) \\
& \leqslant c^{\prime} \prod_{j=0}^{d-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(A+\|m\|_{\mathrm{L}^{\infty}}\right)
\end{aligned}
$$

where c and c^{\prime} depend only on d.

Generalization of the Marcinkiewicz interpolation theorem

Take $l \in\{0, \ldots,(d-1)\}$ and split $x=\left(\bar{x}, x^{\prime}\right)=\left(x_{1}, \ldots, x_{l} ; x_{l+1}, \ldots, x_{d}\right)$. Next define $\|f\|_{\overline{\mathbf{p}}, p}=\|f\|_{(\overline{\mathbf{P}}, p, \ldots, p)}$ and also a distribution function:

$$
\lambda_{f}(\alpha)=\lambda(f ; \alpha)=\operatorname{vol}\left\{\mathbf{x} \in \mathbf{R}^{d}:|f(\mathbf{x})|>\alpha\right\} .
$$

Generalization of the Marcinkiewicz interpolation theorem

Take $l \in\{0, \ldots,(d-1)\}$ and split $x=\left(\bar{x}, x^{\prime}\right)=\left(x_{1}, \ldots, x_{l} ; x_{l+1}, \ldots, x_{d}\right)$. Next define $\|f\|_{\overline{\mathbf{p}}, p}=\|f\|_{(\overline{\mathbf{P}}, p, \ldots, p)}$ and also a distribution function:

$$
\lambda_{f}(\alpha)=\lambda(f ; \alpha)=\operatorname{vol}\left\{\mathbf{x} \in \mathbf{R}^{d}:|f(\mathbf{x})|>\alpha\right\} .
$$

Lemma 1. Assume that for a linear operator $T: L_{c}^{\infty}\left(\mathbf{R}^{d}\right) \rightarrow L_{l o c}^{1}\left(\mathbf{R}^{d}\right)$, and some $\overline{\mathbf{p}} \in\langle 1, \infty\rangle^{m}$ and $q \in\langle 1, \infty\rangle$ there exist $\left.c_{1}, c_{q}\right\rangle 0$ such that for an arbitrary $\alpha>0$ and $f \in \mathrm{~L}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ we have:

$$
\begin{gathered}
\lambda\left(\|T f\|_{\overline{\mathbf{p}}} ; \alpha\right) \leqslant c_{1} \alpha^{-1}\|f\|_{\overline{\mathbf{p}}, 1}, \\
\|T f\|_{\overline{\mathbf{p}}, q} \leqslant c_{q}\|f\|_{\overline{\mathbf{p}}, q} .
\end{gathered}
$$

Then for an arbitrary $p \in\langle 1, q\rangle$ and $f \in \mathrm{C}_{c}^{\infty}\left(\mathbf{R}^{d}\right)$ it follows

$$
\|T f\|_{\overline{\mathbf{p}}, p} \leqslant 8(p-1)^{-\frac{1}{p}}\left(c_{1}+c_{q}\right)\|f\|_{\overline{\mathbf{p}}, p} .
$$

The Caldéron-Zygmund decomposition

The first assumption of the previous lemma could be omitted (under the assumptions of the Hörmander-Mihlin theorem) using the next lemma, where a dyadic cube in \mathbf{R}^{d} is a product of semi-open intervals, i.e. the set of the form (for $k, m_{1}, \ldots, m_{d} \in \mathbf{Z}$)

$$
\left[2^{k} m_{1}, 2^{k}\left(m_{1}+1\right)\right\rangle \times \cdots \times\left[2^{k} m_{d}, 2^{k}\left(m_{d}+1\right)\right\rangle
$$

The Caldéron-Zygmund decomposition

The first assumption of the previous lemma could be omitted (under the assumptions of the Hörmander-Mihlin theorem) using the next lemma, where a dyadic cube in \mathbf{R}^{d} is a product of semi-open intervals, i.e. the set of the form (for $k, m_{1}, \ldots, m_{d} \in \mathbf{Z}$)

$$
\left[2^{k} m_{1}, 2^{k}\left(m_{1}+1\right)\right\rangle \times \cdots \times\left[2^{k} m_{d}, 2^{k}\left(m_{d}+1\right)\right\rangle
$$

Lemma 2. Let $f \in \mathrm{~L}^{1}\left(\mathbf{R}^{d}\right)$ and $\alpha>0$. Then there exist functions g and b on \mathbf{R}^{d} satisfying:
a) $f=g+b$,
b) $\|g\|_{\mathrm{L}^{1}} \leqslant\|f\|_{\mathrm{L}^{1}}$ and $\|g\|_{\mathrm{L}^{\infty}} \leqslant 2^{d} \alpha$,
c) $b=\sum_{k=1}^{\infty} b_{k}$, where each b_{k} is supported in a dyadic cube $Q_{k}\left(Q_{j} \cap Q_{k}=\emptyset\right.$ for $j \neq k$),
d) $\int_{Q_{k}} b_{k}(\mathbf{x}) d \mathbf{x}=0$,
e) $\left\|b_{k}\right\|_{\mathrm{L}^{1}} \leqslant 2^{d+1} \alpha$ vol Q_{k}, and
f) $\sum_{k=1}^{\infty} \operatorname{vol} Q_{k} \leqslant \alpha^{-1}\|f\|_{\mathrm{L}^{1}}$.

The first Ψ DO result

Theorem 6. Let $\sigma \in S_{1,0}^{0}$, with compact support in x. Then T_{σ} is bounded on $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in\langle 1, \infty\rangle^{d}$.

The general framework

We define (for each $t>0$ and $y^{\prime} \in \mathbf{R}^{d-l}$):

$$
\mathcal{F}_{l, t}^{y^{\prime}}:=\left\{f \in L_{l o c}^{1}\left(\mathbf{R}^{d}\right): \operatorname{supp} f \subseteq \mathbf{R}^{l} \times\left\{x^{\prime}:\left|x^{\prime}-y^{\prime}\right| \infty \leq t\right\} \quad \& \int_{\mathbf{R}^{d-l}} f\left(\bar{x}, x^{\prime}\right) d x^{\prime}=0\left(\text { ae } \bar{x} \in \mathbf{R}^{l}\right)\right\}
$$

The general framework

We define (for each $t>0$ and $y^{\prime} \in \mathbf{R}^{d-l}$):

$$
\mathcal{F}_{l, t}^{y^{\prime}}:=\left\{f \in L_{l o c}^{1}\left(\mathbf{R}^{d}\right): \operatorname{supp} f \subseteq \mathbf{R}^{l} \times\left\{x^{\prime}:\left|x^{\prime}-y^{\prime}\right| \infty \leq t\right\} \& \int_{\mathbf{R}^{d-l}} f\left(\bar{x}, x^{\prime}\right) d x^{\prime}=0\left(\text { ae } \bar{x} \in \mathbf{R}^{l}\right)\right\} .
$$

Theorem 7. Assume that $A, A^{*}: L_{c}^{\infty}\left(\mathbf{R}^{d}\right) \rightarrow L_{l o c}^{1}\left(\mathbf{R}^{d}\right)$ are formally adjoint linear operators, i.e. such that

$$
\left(\forall \varphi, \psi \in C_{c}^{\infty}\left(\mathbf{R}^{d}\right)\right) \quad \int_{\mathbf{R}^{d}}(A \varphi) \bar{\psi}=\int_{\mathbf{R}^{d}} \varphi \overline{A^{*} \psi} .
$$

Furthermore, let us assume that (both for $T=A$ and $T=A^{*}$) there exist constants $N>1$ and $c_{1}>0$ satisfying

$$
\begin{aligned}
& (\forall l \in\{0, \ldots,(d-1)\})\left(\forall x_{0}^{\prime} \in \mathbf{R}^{d-l}\right)(\forall t>0) \\
& \quad \int_{\left|x^{\prime}-x_{0}^{\prime}\right|_{\infty}>N t}\left\|T f\left(\cdot, x^{\prime}\right)\right\|_{\overline{\mathbf{p}}} d x^{\prime} \leq c_{1}\|f\|_{\overline{\mathbf{p}}, 1},
\end{aligned}
$$

for any function $f \in L_{c}^{\infty}\left(\mathbf{R}^{d}\right) \cap \mathcal{F}_{l, t}^{x_{0}^{\prime}}$ and any $\overline{\mathbf{p}} \in\langle 1, \infty\rangle^{l}$.

The general framework - cont.

Theorem 7. If for some $q \in\langle 1, \infty\rangle$ an operator A has a continuous extension to an operator from $L^{q}\left(\mathbf{R}^{d}\right)$ to itself with the norm c_{q}, then A can be extended by the continuity to an operator from $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$ to itself for any $\mathbf{p} \in\langle 1, \infty\rangle^{d}$, with the norm

$$
\begin{aligned}
\|A\|_{L^{\mathbf{P}} \rightarrow L^{\mathbf{P}}} & \leq \sum_{k=1}^{d} c^{k} \prod_{j=0}^{k-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(c_{1}+c_{q}\right) \\
& \leq c^{\prime} \prod_{j=0}^{d-1} \max \left(p_{d-j},\left(p_{d-j}-1\right)^{-1 / p_{d-j}}\right)\left(c_{1}+c_{q}\right)
\end{aligned}
$$

where c and c^{\prime} are constants depending only on N and d.

The second $\Psi D O$ result

Theorem 8. Let $\sigma \in S_{1, \delta}^{0}, \delta \in[0,1\rangle$. Then T_{σ} is bounded on $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right)$, $\mathbf{p} \in\langle 1, \infty\rangle^{d}$.

Integral operators

$$
T f(\mathbf{x})=\int_{\mathbf{R}^{d}} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d \mathbf{y}
$$

Integral operators

$$
T f(\mathbf{x})=\int_{\mathbf{R}^{d}} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d \mathbf{y}
$$

Continuity on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), p \in[1, \infty]$ (Schur):

$$
(\exists C>0) \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{x}<C(\text { ae } \mathbf{y}), \quad \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{y}<C(\text { ae } \mathbf{x}) .
$$

Integral operators

$$
T f(\mathbf{x})=\int_{\mathbf{R}^{d}} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d \mathbf{y}
$$

Continuity on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), p \in[1, \infty]$ (Schur):

$$
(\exists C>0) \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{x}<C(\text { ae } \mathbf{y}), \quad \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{y}<C(\text { ae } \mathbf{x}) .
$$

Sufficient conditions for continuity on $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in\langle 1, \infty\rangle^{d}$:

$$
\int_{\mathbf{R}^{d}}\|K(\cdot, \cdot-\mathbf{z})\|_{L^{\infty}} d \mathbf{z}<\infty, \quad \int_{\mathbf{R}^{d}}\|K(\cdot-\mathbf{z}, \cdot)\|_{L^{\infty}} d \mathbf{z}<\infty .
$$

Integral operators

$$
T f(\mathbf{x})=\int_{\mathbf{R}^{d}} K(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) d \mathbf{y}
$$

Continuity on $\mathrm{L}^{p}\left(\mathbf{R}^{d}\right), p \in[1, \infty]$ (Schur):

$$
(\exists C>0) \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{x}<C(\text { ae } \mathbf{y}), \quad \int_{\mathbf{R}^{d}}|K(\mathbf{x}, \mathbf{y})| d \mathbf{y}<C(\text { ae } \mathbf{x}) .
$$

Sufficient conditions for continuity on $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in\langle 1, \infty\rangle^{d}$:

$$
\int_{\mathbf{R}^{d}}\|K(\cdot, \cdot-\mathbf{z})\|_{L^{\infty}} d \mathbf{z}<\infty, \quad \int_{\mathbf{R}^{d}}\|K(\cdot-\mathbf{z}, \cdot)\|_{L^{\infty}} d \mathbf{z}<\infty .
$$

The connection between those conditions $=$?

Properties of the kernel

We have $\sigma(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ and so there is a $k(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\widehat{k(x, \cdot)}=\sigma(x, \cdot)$. Then we can write

$$
T_{\sigma} \varphi(x)=k(x, \cdot) * \varphi
$$

Properties of the kernel

We have $\sigma(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ and so there is a $k(x, \cdot) \in \mathcal{S}^{\prime}\left(\mathbf{R}^{d}\right)$ such that $\widehat{k(x, \cdot)}=\sigma(x, \cdot)$. Then we can write

$$
T_{\sigma} \varphi(x)=k(x, \cdot) * \varphi
$$

Lemma 3. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}, \rho>0$. Then the kernel $k(x, z)$ satisfies

$$
\left|\partial_{x}^{\alpha} \partial_{z}^{\beta} k(x, z)\right| \leq C_{\alpha, \beta, L} \cdot|z|^{-d-m-\delta|\alpha|-|\beta|-L}, \quad z \neq 0
$$

for all $|\alpha| \leq N,|\beta| \geq 0$ and

$$
L \geq(1-\rho)\left(\left\lfloor\frac{d+m+\delta|\alpha|+|\beta|}{\rho}\right\rfloor+1\right)^{+}
$$

such that $N^{\prime} \geq d+m+\delta|\alpha|+|\beta|+L>0$ and $N^{\prime}>\frac{d+m+\delta|\alpha|+|\beta|}{\rho}$, and where $C_{\alpha, \beta, L}$ is a constant depending only on α, β and L.

The newest $\Psi D O$ result

Theorem 9. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m},[0,1\rangle \ni \delta \leq \rho \in\langle 0,1]$ and

$$
m \leq-(1-\rho)(d+1+\rho)
$$

If

$$
N>\frac{(3-\delta) d+(5-\delta)(1-\delta)}{(1-\delta)^{2}}, \quad N^{\prime}>6 d+12,
$$

then T_{σ} is bounded on $L^{\mathbf{p}}\left(\mathbf{R}^{d}\right), \mathbf{p} \in\langle 1, \infty\rangle^{d}$.

