Basic calculus of pseudodifferential operators with nonsmooth symbols

Ivan Ivec

Faculty of Metallurgy University of Zagreb

13th International ISAAC Congress
Ghent，August 2－6， 2021.

Joint work with Ivana Vojnović

Croatian Science
Foundation

Symbol classes

Pseudodifferential operators

Oscillatory integrals

Double symbols

The composition and adjoints

Symbol classes

$S_{\rho, \delta, N, N^{\prime}}^{m} \ldots$ for $|\alpha| \leq N,|\beta| \leq N^{\prime}$ it holds

$$
\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|},
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$
norm: $|\sigma|_{N, N^{\prime}}^{(m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|}}$

Symbol classes

$S_{\rho, \delta, N, N^{\prime}}^{m} \ldots$ for $|\alpha| \leq N,|\beta| \leq N^{\prime}$ it holds

$$
\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|},
$$

where $\langle\xi\rangle=\left(1+|\xi|^{2}\right)^{\frac{1}{2}}$
norm: $|\sigma|_{N, N^{\prime}}^{(m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\langle\xi)^{m-\rho|\beta|+\delta|\alpha|}}$
$\dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m} \ldots$ for $|\alpha| \leq N,|\beta| \leq N^{\prime}$ it holds

$$
\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle x\rangle^{q-|\alpha|}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|}
$$

norm: $|\sigma|_{N, N^{\prime}}^{(q, m, \rho, \delta)}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x, \xi \in \mathbf{R}^{d}} \frac{\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right|}{\left.\langle x)^{q-|\alpha|} \mid \xi\right)^{m-\rho}|\beta|+\delta|\alpha|}$

All in one

$$
\begin{aligned}
& S_{\rho, \delta, N, N^{\prime}}^{q, m} \ldots \text { for }|\alpha| \leq N,|\beta| \leq N^{\prime} \text { it holds } \\
& \quad\left(\forall x \in \mathbf{R}^{d}\right)\left(\forall \xi \in \mathbf{R}^{d}\right) \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \sigma(x, \xi)\right| \leq C_{\alpha, \beta}\langle x\rangle^{q}\langle\xi\rangle^{m-\rho|\beta|+\delta|\alpha|}
\end{aligned}
$$

It contains both $S_{\rho, \delta, N, N^{\prime}}^{m}$ (as a special case) and $\dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ (as a subclass).

Notation

For $N, N^{\prime} \in \mathbf{N}_{0}$ we define an equivalent family of semi-norms on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
|\varphi|_{N, N^{\prime}}=\sup _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|,
$$

and by $\mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right)$ we denote the Banach space of all functions $\varphi \in C^{N^{\prime}}\left(\mathbf{R}^{d}\right)$ for which $|\varphi|_{N, N^{\prime}}<\infty$.

Notation

For $N, N^{\prime} \in \mathbf{N}_{0}$ we define an equivalent family of semi-norms on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
|\varphi|_{N, N^{\prime}}=\sup _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|,
$$

and by $\mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right)$ we denote the Banach space of all functions $\varphi \in C^{N^{\prime}}\left(\mathbf{R}^{d}\right)$ for which $|\varphi|_{N, N^{\prime}}<\infty$.

Together with standard notation for partial derivatives ∂_{x}^{α} we also use $D_{x}^{\alpha}=(-i)^{|\alpha|} \partial_{x}^{\alpha}$ and $\left\langle D_{x}\right\rangle^{2 k}=\left(1-\triangle_{x}\right)^{k}$, where \triangle is the Laplace operator.

Notation

For $N, N^{\prime} \in \mathbf{N}_{0}$ we define an equivalent family of semi-norms on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
|\varphi|_{N, N^{\prime}}=\sup _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|,
$$

and by $\mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right)$ we denote the Banach space of all functions $\varphi \in C^{N^{\prime}}\left(\mathbf{R}^{d}\right)$ for which $|\varphi|_{N, N^{\prime}}<\infty$.

Together with standard notation for partial derivatives ∂_{x}^{α} we also use $D_{x}^{\alpha}=(-i)^{|\alpha|} \partial_{x}^{\alpha}$ and $\left\langle D_{x}\right\rangle^{2 k}=\left(1-\triangle_{x}\right)^{k}$, where \triangle is the Laplace operator.

By C we always denote a constant, even if it changes during calculation, while C_{p} is a constant depending on parameter p.

Notation

For $N, N^{\prime} \in \mathbf{N}_{0}$ we define an equivalent family of semi-norms on $\mathcal{S}\left(\mathbb{R}^{d}\right)$ with

$$
|\varphi|_{N, N^{\prime}}=\sup _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{x \in \mathbb{R}^{d}}\left|x^{\alpha} \partial^{\beta} \varphi(x)\right|,
$$

and by $\mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right)$ we denote the Banach space of all functions $\varphi \in C^{N^{\prime}}\left(\mathbf{R}^{d}\right)$ for which $|\varphi|_{N, N^{\prime}}<\infty$.

Together with standard notation for partial derivatives ∂_{x}^{α} we also use $D_{x}^{\alpha}=(-i)^{|\alpha|} \partial_{x}^{\alpha}$ and $\left\langle D_{x}\right\rangle^{2 k}=\left(1-\triangle_{x}\right)^{k}$, where \triangle is the Laplace operator.

By C we always denote a constant, even if it changes during calculation, while C_{p} is a constant depending on parameter p.

By $\lfloor x\rfloor$ we denote the largest integer not greater than x, while $\lfloor x\rfloor_{2}$ is the largest even integer not greater than x.

TDO - definition and continuity
For $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$ or $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ we denote the corresponding pseudodifferential operator T_{σ} by

$$
T_{\sigma} \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) d \xi, \varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right),
$$

where $d \xi=(2 \pi)^{-d} d \xi$.

$\Psi D O$ - definition and continuity

For $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$ or $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ we denote the corresponding pseudodifferential operator T_{σ} by

$$
T_{\sigma} \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) d \xi, \varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right),
$$

where $d \xi=(2 \pi)^{-d} d \xi$.
Lemma 1. $\mathcal{F}: \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{S}_{N^{\prime}, N-d-1}\left(\mathbf{R}^{d}\right)$ is a linear bounded mapping for $N \geq d+1$. More precisely, there is a constant $C_{N, N^{\prime}}>0$ such that

$$
|\hat{\varphi}|_{N^{\prime}, N-d-1} \leq C_{N, N^{\prime}}|\varphi|_{N, N^{\prime}} \quad \text { for all } \varphi \in \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) .
$$

$\Psi D O$ - definition and continuity

For $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$ or $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ we denote the corresponding pseudodifferential operator T_{σ} by

$$
T_{\sigma} \varphi(x)=\int_{\mathbb{R}^{d}} e^{i x \cdot \xi} \sigma(x, \xi) \hat{\varphi}(\xi) d \xi, \varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right)
$$

where $d \xi=(2 \pi)^{-d} d \xi$.
Lemma 1. $\mathcal{F}: \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{S}_{N^{\prime}, N-d-1}\left(\mathbf{R}^{d}\right)$ is a linear bounded mapping for $N \geq d+1$. More precisely, there is a constant $C_{N, N^{\prime}}>0$ such that

$$
|\hat{\varphi}|_{N^{\prime}, N-d-1} \leq C_{N, N^{\prime}}|\varphi|_{N, N^{\prime}} \quad \text { for all } \varphi \in \mathcal{S}_{N, N^{\prime}}\left(\mathbf{R}^{d}\right) .
$$

Theorem 1. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$. Then T_{σ} is a bounded mapping from $\mathcal{S}\left(\mathbf{R}^{d}\right)$ to $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right)$, and from $\mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$ to $\mathcal{S}_{\min \left\{N^{\prime}, M-d-1\right\}, \min \left\{N, M^{\prime}-m-d-1\right\}}\left(\mathbf{R}^{d}\right), M \geq d+1, M^{\prime} \geq m+d+1$. More precisely, there is a constant $C_{k, l}>0$ such that

$$
\left|T_{\sigma} \varphi\right|_{k, l} \leq C_{k, l}|\sigma|_{l, k}^{(m, \rho, \delta)}|\varphi|_{d+1+k, m+d+1+l}
$$

for all $k, l \in \mathbf{N}_{0}$ for which semi-norms are well-defined.

Remark on \dot{S}

Theorem 1 holds also for $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}, q \leq 0$ as in that case we have $\dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m} \subseteq S_{\rho, \delta, N, N^{\prime}}^{m}$. For $q>0$ we cannot estimate $\langle x\rangle^{q}$.

Remark on \dot{S}

Theorem 1 holds also for $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}, q \leq 0$ as in that case we have $\dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m} \subseteq S_{\rho, \delta, N, N^{\prime}}^{m}$. For $q>0$ we cannot estimate $\langle x\rangle^{q}$.

Theorem 1 shows that for $\sigma_{1} \in S_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{m_{1}}, \sigma_{2} \in S_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{m_{2}}$ we have that $T_{\sigma_{1}} T_{\sigma_{2}}: \mathcal{S}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{S}_{\min \left\{N_{1}^{\prime}, N_{2}^{\prime}-d-1\right\}, \min \left\{N_{1}, N_{2}-m_{1}-d-1\right\}}\left(\mathbf{R}^{d}\right)$ is well-defined and bounded operator.

Remark on \dot{S}

Theorem 1 holds also for $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}, q \leq 0$ as in that case we have $\dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m} \subseteq S_{\rho, \delta, N, N^{\prime}}^{m}$. For $q>0$ we cannot estimate $\langle x\rangle^{q}$.

Theorem 1 shows that for $\sigma_{1} \in S_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{m_{1}}, \sigma_{2} \in S_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{m_{2}}$ we have that $T_{\sigma_{1}} T_{\sigma_{2}}: \mathcal{S}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{S}_{\min \left\{N_{1}^{\prime}, N_{2}^{\prime}-d-1\right\}, \min \left\{N_{1}, N_{2}-m_{1}-d-1\right\}}\left(\mathbf{R}^{d}\right)$ is well-defined and bounded operator.

Goals:

1) to prove that this composition is again a pseudodifferential operator with a symbol in a suitable class and to obtain an exact formula and an asymptotic expansion for its symbol.

Remark on \dot{S}

Theorem 1 holds also for $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}, q \leq 0$ as in that case we have $\dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m} \subseteq S_{\rho, \delta, N, N^{\prime}}^{m}$. For $q>0$ we cannot estimate $\langle x\rangle^{q}$.

Theorem 1 shows that for $\sigma_{1} \in S_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{m_{1}}, \sigma_{2} \in S_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{m_{2}}$ we have that $T_{\sigma_{1}} T_{\sigma_{2}}: \mathcal{S}\left(\mathbf{R}^{d}\right) \rightarrow \mathcal{S}_{\min \left\{N_{1}^{\prime}, N_{2}^{\prime}-d-1\right\}, \min \left\{N_{1}, N_{2}-m_{1}-d-1\right\}}\left(\mathbf{R}^{d}\right)$ is well-defined and bounded operator.

Goals:

1) to prove that this composition is again a pseudodifferential operator with a symbol in a suitable class and to obtain an exact formula and an asymptotic expansion for its symbol.
2) to do the same for a formal adjoint of T_{σ}, where $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{m}$.

Amplitudes

The space of amplitudes $\mathcal{A}_{N, N^{\prime}}^{q, m, \delta}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right), q, m \in \mathbf{R}, \delta \in[0,1), N, N^{\prime} \in \mathbf{N}_{0}$, is the set of functions $a: \mathbf{R}^{d} \times \mathbf{R}^{d} \rightarrow \mathbf{C}$ such that

$$
\left|\partial_{y}^{\alpha} \partial_{\eta}^{\beta} a(y, \eta)\right| \leq C_{\alpha, \beta}\langle y\rangle^{q}\langle\eta\rangle^{m+\delta|\alpha|}
$$

uniformly in $y, \eta \in \mathbf{R}^{d}$ for all $|\alpha| \leq N,|\beta| \leq N^{\prime}$, and where all partial derivatives are understood to be continuous.

Amplitudes

The space of amplitudes $\mathcal{A}_{N, N^{\prime}}^{q, m, \delta}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right), q, m \in \mathbf{R}, \delta \in[0,1), N, N^{\prime} \in \mathbf{N}_{0}$, is the set of functions $a: \mathbf{R}^{d} \times \mathbf{R}^{d} \rightarrow \mathbf{C}$ such that

$$
\left|\partial_{y}^{\alpha} \partial_{\eta}^{\beta} a(y, \eta)\right| \leq C_{\alpha, \beta}\langle y\rangle^{q}\langle\eta\rangle^{m+\delta|\alpha|}
$$

uniformly in $y, \eta \in \mathbf{R}^{d}$ for all $|\alpha| \leq N,|\beta| \leq N^{\prime}$, and where all partial derivatives are understood to be continuous.
$\mathcal{A}_{N, N^{\prime}}^{q, m, \delta}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ is the Banach space with the norm

$$
|a|_{\mathcal{A}_{N, N^{\prime}}^{q, m, \delta}}=\max _{|\alpha| \leq N,|\beta| \leq N^{\prime}} \sup _{y, \eta \in \mathbf{R}^{d}} \frac{\left|\partial_{y}^{\alpha} \partial_{\eta}^{\beta} a(y, \eta)\right|}{\langle y\rangle^{q}\langle\eta\rangle^{m+\delta|\alpha|}} .
$$

Oscillatory integrals

Theorem 2. Let $a \in \mathcal{A}_{N, N^{\prime}}^{q, m}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right), q, m \in \mathbf{R}, \delta \in[0,1), N, N^{\prime} \in 2 \mathbf{N}_{0}$, $N>\frac{m+d}{1-\delta}, N^{\prime}>q+d$, and let $\chi \in \mathcal{S}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ with $\chi(0,0)=1$. Then

$$
\iint e^{-i y \eta} a(y, \eta) d y d \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon y, \epsilon \eta) e^{-i y \eta} a(y, \eta) d y d \eta
$$

exists

Oscillatory integrals

Theorem 2. Let $a \in \mathcal{A}_{N, N^{\prime}}^{q, m}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right), q, m \in \mathbf{R}, \delta \in[0,1), N, N^{\prime} \in 2 \mathbf{N}_{0}$, $N>\frac{m+d}{1-\delta}, N^{\prime}>q+d$, and let $\chi \in \mathcal{S}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ with $\chi(0,0)=1$. Then

$$
\iint e^{-i y \eta} a(y, \eta) d y d \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon y, \epsilon \eta) e^{-i y \eta} a(y, \eta) d y d \eta
$$

exists and

$$
\iint e^{-i y \eta} a(y, \eta) d y d \eta=\iint e^{-i y \eta}\langle y\rangle^{-2 l^{\prime}}\left\langle D_{\eta}\right\rangle^{2 l^{\prime}}\left(\langle\eta\rangle^{-2 l}\left\langle D_{y}\right\rangle^{2 l} a(y, \eta)\right) d y d \eta,
$$

where $l, l^{\prime} \in \mathbf{N}_{0}$ are chosen so that the integrand is in $L^{1}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$, namely $N \geq 2 l>\frac{m+d}{1-\delta}, N^{\prime} \geq 2 l^{\prime}>q+d$. Moreover, the definition does not depend on χ and

$$
\left|\iint e^{-i y \eta} a(y, \eta) d y d \eta\right| \leq C_{q, m, \delta}|a|_{\mathcal{A}_{2 l, 2 l^{\prime}}^{q, m, \delta}} .
$$

Oscillatory = iterated

We can notice that the previous theorem simplifies if $q<-d$ or $m<-d$, and that for $q, m<-d$ we actually have an absolutely convergent integral.

Oscillatory = iterated

We can notice that the previous theorem simplifies if $q<-d$ or $m<-d$, and that for $q, m<-d$ we actually have an absolutely convergent integral.

For example, if $q<-d$, we can take $\chi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ with $\chi(0)=1$ and equivalently define the oscillatory integral as

$$
\iint e^{-i y \eta} a(y, \eta) d y d \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon \eta) e^{-i y \eta} a(y, \eta) d y d \eta .
$$

Oscillatory = iterated

We can notice that the previous theorem simplifies if $q<-d$ or $m<-d$, and that for $q, m<-d$ we actually have an absolutely convergent integral.

For example, if $q<-d$, we can take $\chi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ with $\chi(0)=1$ and equivalently define the oscillatory integral as

$$
\iint e^{-i y \eta} a(y, \eta) d y đ \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon \eta) e^{-i y \eta} a(y, \eta) d y đ \eta
$$

In this case the oscillatory integral is equal to an iterated integral, whenever the latter exists.

Oscillatory $=$ iterated

We can notice that the previous theorem simplifies if $q<-d$ or $m<-d$, and that for $q, m<-d$ we actually have an absolutely convergent integral.

For example, if $q<-d$, we can take $\chi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$ with $\chi(0)=1$ and equivalently define the oscillatory integral as

$$
\iint e^{-i y \eta} a(y, \eta) d y đ \eta:=\lim _{\epsilon \rightarrow 0} \iint \chi(\epsilon \eta) e^{-i y \eta} a(y, \eta) d y đ \eta
$$

In this case the oscillatory integral is equal to an iterated integral, whenever the latter exists.

For simplicity, in the sequel we sometimes consider only the case $q, m \geq-d$ as the most interesting one.

Change of variables

For $\chi(y, \eta) \in \mathcal{S}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ with $\chi(0,0)=1$ a function $\chi(A(y, \eta))$, where A is the regular real matrix, has the same properties and so we are allowed to make a linear change of variables $(y, \eta)=A\left(y^{\prime}, \eta^{\prime}\right)$ in the oscillatory integral as long as $y \eta=y^{\prime} \eta^{\prime}$, in which case we have

$$
\iint e^{-i y \eta} a(y, \eta) d y d \eta=\iint e^{-i y^{\prime} \eta^{\prime}} a\left(A\left(y^{\prime}, \eta^{\prime}\right)\right)|\operatorname{det} A| d y^{\prime} d \eta^{\prime}
$$

Change of variables

For $\chi(y, \eta) \in \mathcal{S}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)$ with $\chi(0,0)=1$ a function $\chi(A(y, \eta))$, where A is the regular real matrix, has the same properties and so we are allowed to make a linear change of variables $(y, \eta)=A\left(y^{\prime}, \eta^{\prime}\right)$ in the oscillatory integral as long as $y \eta=y^{\prime} \eta^{\prime}$, in which case we have

$$
\iint e^{-i y \eta} a(y, \eta) d y \nexists \eta=\iint e^{-i y^{\prime} \eta^{\prime}} a\left(A\left(y^{\prime}, \eta^{\prime}\right)\right)|\operatorname{det} A| d y^{\prime} d \eta^{\prime}
$$

Moreover, this change of variables can be performed without the requirement $y \eta=y^{\prime} \eta^{\prime}$ if we replace $y \eta$ in the definition of the oscillatory integral with a general nondegenerate real quadratic form. In that case we are not able to obtain the representation from Theorem 2.

The Fubini theorem

Theorem 3. Let $a \in \mathcal{A}_{N, N^{\prime}}^{q, m, \delta}\left(\mathbf{R}^{d+k} \times \mathbf{R}^{d+k}\right), q, m \in \mathbf{R}, \delta \in[0,1)$ and $N, N^{\prime} \in \mathbf{N}_{0}$ with

$$
N \geq \frac{|m|+k+2}{1-\delta}, \quad N^{\prime} \geq|q|+k+2 .
$$

Then

$$
b(y, \eta):=\iint e^{-i y^{\prime} \eta^{\prime}} a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y^{\prime} đ \eta^{\prime} \in \mathcal{A}_{N-2 l, N^{\prime}-2 l^{\prime}}^{q, m+\delta, 0}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right),
$$

where integration is with respect to $\mathbf{R}^{k} \times \mathbf{R}^{k}, 2 l>|m|+\delta N+k$, $2 l^{\prime}>|q|+k$, and

$$
\partial_{y}^{\alpha} \partial_{\eta}^{\beta} b(y, \eta)=\iint e^{-i y^{\prime} \eta^{\prime}} \partial_{y}^{\alpha} \partial_{\eta}^{\beta} a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y^{\prime} d \eta^{\prime},
$$

for $|\alpha| \leq N-2 l,|\beta| \leq N^{\prime}-2 l^{\prime}$.

The Fubini theorem - cont.

Theorem 3. Moreover, if $\delta \in\left[0, \frac{1}{2}\right), q, m \geq-d$ and $N, N^{\prime} \in 2 \mathbf{N}_{0}$ with

$$
N>\frac{m+|m|+\max \{d, k\}+d+k+2}{1-2 \delta}, \quad N^{\prime}>q+|q|+\max \{d, k\}+d+k+2
$$

then

$$
\begin{aligned}
\iiint \int e^{-i y \eta-i y^{\prime} \eta^{\prime}} & a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y d y^{\prime} đ \eta đ \eta^{\prime} \\
& =\iint e^{-i y \eta}\left(\iint e^{-i y^{\prime} \eta^{\prime}} a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y^{\prime} đ \eta^{\prime}\right) d y đ \eta
\end{aligned}
$$

Operators with double symbols

$T_{\sigma}^{D} \varphi(x)=\int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} e^{i\left(x-x^{\prime}\right) \cdot \xi+i\left(x^{\prime}-x^{\prime \prime}\right) \cdot \xi^{\prime}} \sigma\left(x, \xi, x^{\prime}, \xi^{\prime}\right) \varphi\left(x^{\prime \prime}\right) d x^{\prime \prime} d \xi^{\prime} d x^{\prime} d \xi$,
where $\varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$, the integrals have to be understood as iterated integrals and the symbol σ belongs to one of the following two classes.

Operators with double symbols

$$
T_{\sigma}^{D} \varphi(x)=\int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} e^{i\left(x-x^{\prime}\right) \cdot \xi+i\left(x^{\prime}-x^{\prime \prime}\right) \cdot \xi^{\prime}} \sigma\left(x, \xi, x^{\prime}, \xi^{\prime}\right) \varphi\left(x^{\prime \prime}\right) d x^{\prime \prime} d \xi^{\prime} d x^{\prime} d \xi,
$$

where $\varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$, the integrals have to be understood as iterated integrals and the symbol σ belongs to one of the following two classes.

$$
\begin{aligned}
& S_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{q_{1}, m_{1},,_{2}, m_{2}} \\
& \left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{x^{\prime}}^{\alpha^{\prime}} \partial_{\xi^{\prime}}^{\beta^{\prime}} \sigma\left(x, \xi, x^{\prime}, \xi^{\prime}\right)\right| \leq C\langle x\rangle^{q_{1}}\langle\xi\rangle^{m_{1}-\rho_{1}|\beta|+\delta_{1}|\alpha|}\left\langle x^{\prime}\right\rangle^{q_{2}}\left\langle\xi^{\prime}\right\rangle^{m_{2}-\rho_{2}\left|\beta^{\prime}\right|+\delta_{2}\left|\alpha^{\prime}\right|}
\end{aligned}
$$

In the case $q_{1}=q_{2}=0$ we denote this class as $S_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{m_{1}, \text {. }}$

Operators with double symbols

$$
T_{\sigma}^{D} \varphi(x)=\int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} e^{i\left(x-x^{\prime}\right) \cdot \xi+i\left(x^{\prime}-x^{\prime \prime}\right) \cdot \xi^{\prime}} \sigma\left(x, \xi, x^{\prime}, \xi^{\prime}\right) \varphi\left(x^{\prime \prime}\right) d x^{\prime \prime} d \xi^{\prime} d x^{\prime} d \xi,
$$

where $\varphi \in \mathcal{S}\left(\mathbf{R}^{d}\right)$, the integrals have to be understood as iterated integrals and the symbol σ belongs to one of the following two classes.

$$
\begin{aligned}
& S_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{q_{1}, m_{1},{ }_{2}} \cdots \\
& \left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{x^{\prime}}^{\alpha^{\prime}} \partial_{\xi^{\prime}}^{\beta^{\prime}} \sigma\left(x, \xi, x^{\prime}, \xi^{\prime}\right)\right| \leq C\langle x\rangle^{q_{1}}\langle\xi\rangle^{m_{1}-\rho_{1}|\beta|+\delta_{1}|\alpha|}\left\langle x^{\prime}\right\rangle^{q_{2}}\left\langle\xi^{\prime}\right\rangle^{m_{2}-\rho_{2}\left|\beta^{\prime}\right|+\delta_{2}\left|\alpha^{\prime}\right|}
\end{aligned}
$$

In the case $q_{1}=q_{2}=0$ we denote this class as $S_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{m_{1},}$

$$
\dot{S}_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N}
$$

$$
\begin{aligned}
& \left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} \partial_{x^{\prime}}^{\alpha^{\prime}} \partial_{\xi^{\prime}}^{\beta^{\prime}} \sigma\left(x, \xi, x^{\prime}, \xi^{\prime}\right)\right| \\
& \quad \leq C\langle x\rangle^{q_{1}-|\alpha|}\langle\xi\rangle^{m_{1}-\rho_{1}|\beta|+\delta_{1}|\alpha|}\left\langle x^{\prime}\right\rangle^{q_{2}-\left|\alpha^{\prime}\right|}\left\langle\xi^{\prime}\right\rangle^{m_{2}-\rho_{2}\left|\beta^{\prime}\right|+\delta_{2}\left|\alpha^{\prime}\right|}
\end{aligned}
$$

The Fubini theorem for double symbols

Theorem 4. Let $a \in S_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{q_{1}, m_{1}, q_{2}, m_{2}}$ with $N_{1}, N_{2}, N_{1}^{\prime}, N_{2}^{\prime} \in 2 \mathbf{N}_{0}$. If

$$
N_{2}>\frac{m_{2}+d}{1-\delta_{2}}, \quad N_{2}^{\prime}>q_{2}+d
$$

then

$$
b(y, \eta):=\iint e^{-i y^{\prime} \eta^{\prime}} a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y^{\prime} đ \eta^{\prime} \in \mathcal{A}_{N_{1}, N_{1}^{\prime}}^{q_{1}, m_{1}, \delta_{1}}\left(\mathbf{R}^{d} \times \mathbf{R}^{d}\right)
$$

and

$$
\partial_{y}^{\alpha} \partial_{\eta}^{\beta} b(y, \eta)=\iint e^{-i y^{\prime} \eta^{\prime}} \partial_{y}^{\alpha} \partial_{\eta}^{\beta} a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y^{\prime} đ \eta^{\prime}
$$

for $|\alpha| \leq N_{1},|\beta| \leq N_{1}^{\prime}$.

The Fubini theorem for double symbols - cont.

Theorem 4. Moreover, if $q_{1}, q_{2}, m_{1}, m_{2} \geq-d$ and

$$
N_{1}, N_{2}>\frac{\tilde{m}+(3-\delta) d+4(1-\delta)}{(1-\delta)^{2}}, \quad N_{1}^{\prime}, N_{2}^{\prime}>\tilde{q}+3 d+4
$$

where $\tilde{q}=\max \left\{q_{1}, q_{2}, q_{1}+q_{2}\right\}, \tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}$ and $\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$, then

$$
\begin{array}{rl}
\iiint \int e^{-i y \eta-i y^{\prime} \eta^{\prime}} a & a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y d y^{\prime} đ \eta む \eta^{\prime} \\
& =\iint e^{-i y \eta}\left(\iint e^{-i y^{\prime} \eta^{\prime}} a\left(y, y^{\prime}, \eta, \eta^{\prime}\right) d y^{\prime} d \eta^{\prime}\right) d y đ \eta
\end{array}
$$

Asymptotic expansion I

We want to show that for regular enough symbols we have $T_{\sigma}^{D}=T_{\sigma_{L}}$ where

$$
\begin{equation*}
\sigma_{L}(x, \xi):=\iint e^{-i y \eta} \sigma(x, \xi+\eta, x+y, \xi) d y d \eta \tag{1}
\end{equation*}
$$

In the next two theorems we first derive asymptotic expansions for σ_{L}.

Asymptotic expansion I

We want to show that for regular enough symbols we have $T_{\sigma}^{D}=T_{\sigma_{L}}$ where

$$
\begin{equation*}
\sigma_{L}(x, \xi):=\iint e^{-i y \eta} \sigma(x, \xi+\eta, x+y, \xi) d y d \eta \tag{1}
\end{equation*}
$$

In the next two theorems we first derive asymptotic expansions for σ_{L}.

Theorem 5. Let $\sigma \in S_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, \rho}^{m_{1}, m_{2}} \rho=\min \left\{\rho_{1}, \rho_{2}\right\}$, $\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$, and let σ_{L} be defined by (1). If

$$
N_{2} \geq \rho_{1} N_{1}^{\prime}+\left|m_{1}\right|+\left(1-\rho_{1}\right)(d+2), \quad N_{1}^{\prime} \geq d+2
$$

then

$$
\sigma_{L} \in S_{\rho-\rho_{1} \delta_{2}, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\rho_{1} N_{1}^{\prime}-\left|m_{1}\right|-\left(1-\rho_{1}\right)(d+2)}{1+\delta_{1}}\right\rfloor, N_{1}^{\prime}-d-2}^{m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)} .
$$

Asymptotic expansion I - cont.

Theorem 5. Moreover, if (for some $K \in \mathbf{N}_{0}$)
$\rho_{1}>\frac{\delta_{2}}{1-\delta_{2}}, \quad N_{2} \geq \rho_{1} N_{1}^{\prime}+\left|m_{1}\right|+\left(1-\rho_{1}\right)(d+2)+K+1, \quad N_{1}^{\prime} \geq K+d+3$,
then we have

$$
\sigma_{L}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_{x^{\prime}}^{\gamma} \sigma(x, \xi, x, \xi)+r_{L}^{(K)}(x, \xi),
$$

where

$$
\begin{aligned}
r_{L}^{(K)} \in S^{m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)-\left(\rho_{1}-\delta_{2}-\rho_{1} \delta_{2}\right)(K+1)} \\
\rho-\rho_{1} \delta_{2}, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\rho_{1} N_{1}^{\prime}-\left|m_{1}\right|-\left(1-\rho_{1}\right)(d+2)-K-1}{1+\delta_{1}}\right\rfloor, N_{1}^{\prime}-K-d-3
\end{aligned}
$$

Asymptotic expansion II

Theorem 6. Let $\sigma \in \dot{S}_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{q_{1}, m_{1}, q_{2}, m_{2}} \rho=\min \left\{\rho_{1}, \rho_{2}\right\}$,
$\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$, and let σ_{L} be defined by (1). If

$$
N_{2} \geq\left|m_{1}\right|+d+2, \quad N_{1}^{\prime} \geq\left|q_{2}\right|+\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)}{1+\delta_{1}}
$$

then

$$
\begin{aligned}
& \sigma_{L} \in \dot{S}^{q_{1}+q_{2}, m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)} \\
& 0, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\left|m_{1}\right|-d-2}{1+\delta_{1}}\right\rfloor,\left\lfloor N_{1}^{\prime}-\left|q_{2}\right|-\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)}{1+\delta_{1}}\right\rfloor
\end{aligned}
$$

Asymptotic expansion II

Theorem 6. Let $\sigma \in \dot{S}_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{q_{1}, m_{1}, q_{2}, m_{2}} \rho=\min \left\{\rho_{1}, \rho_{2}\right\}$,
$\delta=\max \left\{\delta_{1}, \delta_{2}\right\}$, and let σ_{L} be defined by (1). If

$$
N_{2} \geq\left|m_{1}\right|+d+2, \quad N_{1}^{\prime} \geq\left|q_{2}\right|+\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)}{1+\delta_{1}}
$$

then

$$
\left.\sigma_{L} \in \dot{S}_{0, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\left|m_{1}\right|-d-2}{q_{1}+q_{2}, m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)}\right\rfloor}^{1+\delta_{1}}\right\rfloor,\left\lfloor N_{1}^{\prime}-\left|q_{2}\right|-\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)}{1+\delta_{1}}\right\rfloor .
$$

Moreover, if (for some $K \in \mathbf{N}_{0}$) $\rho_{1} \geq \frac{\delta_{2}}{1-\delta_{2}}$ and

$$
N_{2} \geq\left|m_{1}\right|+d+2+\left(1+\rho_{1}\right)(K+1), \quad N_{1}^{\prime} \geq\left|q_{2}\right|+\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)-2\left(\rho_{1}-\delta_{1}\right)(K+1)}{1+\delta_{1}},
$$

then we have

$$
\sigma_{L}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_{x^{\prime}}^{\gamma} \sigma(x, \xi, x, \xi)+r_{L}^{(K)}(x, \xi)
$$

where

$$
\begin{aligned}
& r_{L}^{(K)} \in \dot{S}^{q_{1}+q_{2}-K-1, m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)-\left(\rho_{1}-\delta_{2}-\rho_{1} \delta_{2}\right)(K+1)} \\
& \quad 0, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\left|m_{1}\right|-d-2-\left(1+\rho_{1}\right)(K+1)}{1+\delta_{1}}\right\rfloor,\left\lfloor N_{1}^{\prime}-\left|q_{2}\right|-\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)-2\left(\rho_{1}-\delta_{1}\right)(K+1)}{1+\delta_{1}}\right\rfloor
\end{aligned}
$$

$$
T_{\sigma}^{D}=T_{\sigma_{L}}
$$

Theorem 7. Let $\sigma\left(x, \xi, x^{\prime}, \xi^{\prime}\right)=\sigma_{1}(x, \xi) \sigma_{2}\left(x^{\prime}, \xi^{\prime}\right) \in S_{\rho_{1}, \delta_{1}, \rho_{2}, \delta_{2}, N_{1}, N_{1}^{\prime}, N_{2}, N_{2}^{\prime}}^{q_{1}, m_{1}, q_{2}, m_{2}}$. If $N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, M^{\prime} \in 2 \mathbf{N}_{0}, q_{1} \leq 0, q_{2} \in[-d, 0], m_{1}, m_{2} \geq-d$ and $N_{2}>\frac{m^{*}+3 d+4}{1-\delta_{2}}, \quad N_{2}^{\prime}>3 d+4, \quad N_{1}^{\prime}>N_{2}^{\prime}+q_{2}+3 d+4, \quad M>2 d+1, \quad M^{\prime}>\tilde{m}+\left(1+\delta_{2}\right) N_{2}+3 d+4$, then

$$
T_{\sigma}^{D} \varphi(x)=T_{\sigma_{L}} \varphi(x),
$$

where $m^{*}=\max \left\{\left|m_{1}\right|,\left|m_{1}\right|+m_{1}+m_{2}\right\}, \tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}$ and $\varphi \in \mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$.

The composition theorem I

Theorem 8. Let $\sigma_{1} \in S_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{m_{1}}, \sigma_{2} \in S_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{m_{2}}, m_{1}, m_{2} \geq-d$,
$m^{*}=\max \left\{\left|m_{1}\right|,\left|m_{1}\right|+m_{1}+m_{2}\right\}, \tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}$,
$\rho=\min \left\{\rho_{1}, \rho_{2}\right\}, \delta=\max \left\{\delta_{1}, \delta_{2}\right\}$ and $\varphi \in \mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$. If $N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, M^{\prime} \in 2 \mathbf{N}_{0}$ and

$$
N_{2}>\frac{m^{*}+3 d+4}{1-\delta_{2}}, \quad N_{2}^{\prime}>3 d+4, \quad N_{1}^{\prime}>N_{2}^{\prime}+3 d+4, \quad M>2 d+1, \quad M^{\prime}>\tilde{m}+\left(1+\delta_{2}\right) N_{2}+3 d+4,
$$

then

$$
\left(T_{\sigma_{1}} \circ T_{\sigma_{2}}\right) \varphi(x)=T_{\sigma_{1} \# \sigma_{2}} \varphi(x)
$$

where

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\iint e^{-i y \eta} \sigma_{1}(x, \xi+\eta) \sigma_{2}(x+y, \xi) d y đ \eta
$$

The composition theorem I

Theorem 8. Let $\sigma_{1} \in S_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{m_{1}}, \sigma_{2} \in S_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{m_{2}}, m_{1}, m_{2} \geq-d$,
$m^{*}=\max \left\{\left|m_{1}\right|,\left|m_{1}\right|+m_{1}+m_{2}\right\}, \tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}$,
$\rho=\min \left\{\rho_{1}, \rho_{2}\right\}, \delta=\max \left\{\delta_{1}, \delta_{2}\right\}$ and $\varphi \in \mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$. If $N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, M^{\prime} \in 2 \mathbf{N}_{0}$ and

$$
N_{2}>\frac{m^{*}+3 d+4}{1-\delta_{2}}, \quad N_{2}^{\prime}>3 d+4, \quad N_{1}^{\prime}>N_{2}^{\prime}+3 d+4, \quad M>2 d+1, \quad M^{\prime}>\tilde{m}+\left(1+\delta_{2}\right) N_{2}+3 d+4,
$$

then

$$
\left(T_{\sigma_{1}} \circ T_{\sigma_{2}}\right) \varphi(x)=T_{\sigma_{1} \# \sigma_{2}} \varphi(x),
$$

where

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\iint e^{-i y \eta} \sigma_{1}(x, \xi+\eta) \sigma_{2}(x+y, \xi) d y đ \eta
$$

If additionally $N_{2} \geq \rho_{1} N_{1}^{\prime}+\left|m_{1}\right|+\left(1-\rho_{1}\right)(d+2)$, then

$$
\sigma_{1} \# \sigma_{2} \in S_{\rho-\rho_{1} \delta_{2}, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\rho_{1} N_{1}^{\prime}-\left|m_{1}\right|-\left(1-\rho_{1}\right)(d+2)}{m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)}\right\rfloor, N_{1}^{\prime}-d-2}^{1+\delta_{1}} .
$$

The composition theorem I-cont.

Theorem 8. Moreover, if (for some $K \in \mathbf{N}_{0}$)
$\rho_{1}>\frac{\delta_{2}}{1-\delta_{2}}, \quad N_{2} \geq \rho_{1} N_{1}^{\prime}+\left|m_{1}\right|+\left(1-\rho_{1}\right)(d+2)+K+1, \quad N_{1}^{\prime} \geq K+d+3$, then we have the following asymptotic expansion:

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} \sigma_{1}(x, \xi) D_{x}^{\gamma} \sigma_{2}(x, \xi)+r^{(K)}(x, \xi),
$$

where

$$
\begin{aligned}
r^{(K)} \in S^{m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)-\left(\rho_{1}-\delta_{2}-\rho_{1} \delta_{2}\right)(K+1)} \\
\rho-\rho_{1} \delta_{2}, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\rho_{1} N_{1}^{\prime}-\left|m_{1}\right|-\left(1-\rho_{1}\right)(d+2)-K-1}{1+\delta_{1}}\right\rfloor, N_{1}^{\prime}-K-d-3
\end{aligned}
$$

The composition theorem II

Theorem 9. Let $\sigma_{1} \in \dot{S}_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{q_{1}, m_{1}}, \sigma_{2} \in \dot{S}_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{q_{2}, m_{2}} q_{1} \leq 0, q_{2} \in[-d, 0]$,
$m_{1}, m_{2} \geq-d, m^{*}=\max \left\{\left|m_{1}\right|,\left|m_{1}\right|+m_{1}+m_{2}\right\}$,
$\tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}, \rho=\min \left\{\rho_{1}, \rho_{2}\right\}, \delta=\max \left\{\delta_{1}, \delta_{2}\right\}$ and $\varphi \in \mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$. If $N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, M^{\prime} \in 2 \mathbf{N}_{0}$ and
$N_{2}>\frac{m^{*}+3 d+4}{1-\delta_{2}}, \quad N_{2}^{\prime}>3 d+4, \quad N_{1}^{\prime}>N_{2}^{\prime}+q_{2}+3 d+4, \quad M>2 d+1, \quad M^{\prime}>\tilde{m}+\left(1+\delta_{2}\right) N_{2}+3 d+4$,
then

$$
\left(T_{\sigma_{1}} \circ T_{\sigma_{2}}\right) \varphi(x)=T_{\sigma_{1} \# \sigma_{2}} \varphi(x)
$$

where

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\iint e^{-i y \eta} \sigma_{1}(x, \xi+\eta) \sigma_{2}(x+y, \xi) d y đ \eta
$$

The composition theorem II

Theorem 9. Let $\sigma_{1} \in \dot{S}_{\rho_{1}, \delta_{1}, N_{1}, N_{1}^{\prime}}^{q_{1}, m_{1}}, \sigma_{2} \in \dot{S}_{\rho_{2}, \delta_{2}, N_{2}, N_{2}^{\prime}}^{q_{2}, m_{2}} q_{1} \leq 0, q_{2} \in[-d, 0]$,
$m_{1}, m_{2} \geq-d, m^{*}=\max \left\{\left|m_{1}\right|,\left|m_{1}\right|+m_{1}+m_{2}\right\}$,
$\tilde{m}=\max \left\{m_{1}, m_{2}, m_{1}+m_{2}\right\}, \rho=\min \left\{\rho_{1}, \rho_{2}\right\}, \delta=\max \left\{\delta_{1}, \delta_{2}\right\}$ and
$\varphi \in \mathcal{S}_{M, M^{\prime}}\left(\mathbf{R}^{d}\right)$. If $N_{1}^{\prime}, N_{2}, N_{2}^{\prime}, M^{\prime} \in 2 \mathbf{N}_{0}$ and
$N_{2}>\frac{m^{*}+3 d+4}{1-\delta_{2}}, \quad N_{2}^{\prime}>3 d+4, \quad N_{1}^{\prime}>N_{2}^{\prime}+q_{2}+3 d+4, \quad M>2 d+1, \quad M^{\prime}>\tilde{m}+\left(1+\delta_{2}\right) N_{2}+3 d+4$,
then

$$
\left(T_{\sigma_{1}} \circ T_{\sigma_{2}}\right) \varphi(x)=T_{\sigma_{1} \# \sigma_{2}} \varphi(x)
$$

where

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\iint e^{-i y \eta} \sigma_{1}(x, \xi+\eta) \sigma_{2}(x+y, \xi) d y d \eta
$$

If additionally $N_{1}^{\prime} \geq\left|q_{2}\right|+\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)}{1+\delta_{1}}$, then

$$
\sigma_{1} \# \sigma_{2} \in \dot{S}_{0, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\left|m_{1}\right|-d-2}{q_{1}+q_{2}, m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)}\right\rfloor,\left\lfloor N_{1}^{\prime}-\left|q_{2}\right|-\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)}{1+\delta_{1}}\right\rfloor .}
$$

The composition theorem II - cont.

Theorem 9. Moreover, if (for some $K \in \mathbf{N}_{0}$) $\rho_{1} \geq \frac{\delta_{2}}{1-\delta_{2}}$ and

$$
N_{2} \geq\left|m_{1}\right|+d+2+\left(1+\rho_{1}\right)(K+1), \quad N_{1}^{\prime} \geq\left|q_{2}\right|+\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)-2\left(\rho_{1}-\delta_{1}\right)(K+1)}{1+\delta_{1}}
$$

then we have the following asymptotic expansion:

$$
\sigma_{1} \# \sigma_{2}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} \sigma_{1}(x, \xi) D_{x}^{\gamma} \sigma_{2}(x, \xi)+r^{(K)}(x, \xi),
$$

where

$$
\begin{aligned}
& r^{(K)} \in \dot{S}^{q_{1}+q_{2}-K-1, m_{1}+m_{2}+\delta_{2}\left(\left|m_{1}\right|+d+2\right)-\left(\rho_{1}-\delta_{2}-\rho_{1} \delta_{2}\right)(K+1)} \\
& \quad 0, \delta+\delta_{1} \delta_{2},\left\lfloor\frac{N_{2}-\left|m_{1}\right|-d-2-\left(1+\rho_{1}\right)(K+1)}{1+\delta_{1}}\right\rfloor,\left\lfloor N_{1}^{\prime}-\left|q_{2}\right|-\frac{2\left(N_{2}-\left|m_{1}\right|\right)-\left(1-\delta_{1}\right)(d+2)-2\left(\rho_{1}-\delta_{1}\right)(K+1)}{1+\delta_{1}}\right\rfloor
\end{aligned}
$$

The adjoint

Now we define a formal adjoint of the operator with symbol $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{q, m}$, $q \leq 0$. From Theorem 1 it follows that T_{σ} maps $\mathcal{S}\left(\mathbf{R}^{d}\right)$ to $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right)$. Also, $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right) \subseteq L^{2}\left(\mathbf{R}^{d}\right)$ for $N^{\prime}>\frac{d}{2}$. This motivates the following definition.

The adjoint

Now we define a formal adjoint of the operator with symbol $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{q, m}$, $q \leq 0$. From Theorem 1 it follows that T_{σ} maps $\mathcal{S}\left(\mathbf{R}^{d}\right)$ to $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right)$. Also, $\mathcal{S}_{N^{\prime}, N}\left(\mathbf{R}^{d}\right) \subseteq L^{2}\left(\mathbf{R}^{d}\right)$ for $N^{\prime}>\frac{d}{2}$. This motivates the following definition.

Definition

Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{q, m}, \sigma^{*} \in S_{\rho^{\prime}, \delta^{\prime}, M, M^{\prime}}^{q, m^{\prime}}, q \leq 0, M^{\prime}, N^{\prime}>\frac{d}{2}$. Then $T_{\sigma^{*}}$ is called a formal adjoint of T_{σ} if

$$
\begin{equation*}
\left(\forall \varphi_{1}, \varphi_{2} \in \mathcal{S}\left(\mathbf{R}^{d}\right)\right) \quad\left\langle T_{\sigma} \varphi_{1} \mid \varphi_{2}\right\rangle=\left\langle\varphi_{1} \mid T_{\sigma^{*}} \varphi_{2}\right\rangle \tag{2}
\end{equation*}
$$

where $\langle\cdot \mid \cdot\rangle$ is the standard inner product on $L^{2}\left(\mathbf{R}^{d}\right)$.

The adjoint theorem

Theorem 10. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{q, m}, q \in[-d, 0], m \geq-d$,
$m^{*}=\max \{|m|,|m|+m\}$. If $N, N^{\prime} \in 2 \mathbf{N}_{0}, \delta<\frac{3-\sqrt{5}}{2}$ and

$$
N>\frac{\left[m^{*}+(3-\delta) d+4(1-\delta)\right](1-\delta)^{2}}{1-3 \delta+\delta^{2}}, \quad N^{\prime}>2 q+6 d+10,
$$

then (2) is satisfied for

$$
\sigma^{*}(x, \xi)=\iint e^{-i y \eta} \overline{\sigma(x+y, \xi+\eta)} d y d \eta
$$

The adjoint theorem

Theorem 10. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{q, m}, q \in[-d, 0], m \geq-d$,
$m^{*}=\max \{|m|,|m|+m\}$. If $N, N^{\prime} \in 2 \mathbf{N}_{0}, \delta<\frac{3-\sqrt{5}}{2}$ and

$$
N>\frac{\left[m^{*}+(3-\delta) d+4(1-\delta)\right](1-\delta)^{2}}{1-3 \delta+\delta^{2}}, \quad N^{\prime}>2 q+6 d+10,
$$

then (2) is satisfied for

$$
\sigma^{*}(x, \xi)=\iint e^{-i y \eta} \overline{\sigma(x+y, \xi+\eta)} d y d \eta .
$$

If additionally $N \geq \frac{\rho N^{\prime}+|m|+(1-\rho)(d+2)}{1-\delta}$, then

$$
\sigma^{*} \in S_{\left.\rho, 0, L(1-\delta) N-\rho N^{\prime}-|m|-(1-\rho)(d+2)\right\rfloor, N^{\prime}-d-2}^{m+\delta N},
$$

The adjoint theorem

Theorem 10. Let $\sigma \in S_{\rho, \delta, N, N^{\prime}}^{q, m}, q \in[-d, 0], m \geq-d$,
$m^{*}=\max \{|m|,|m|+m\}$. If $N, N^{\prime} \in 2 \mathbf{N}_{0}, \delta<\frac{3-\sqrt{5}}{2}$ and

$$
N>\frac{\left[m^{*}+(3-\delta) d+4(1-\delta)\right](1-\delta)^{2}}{1-3 \delta+\delta^{2}}, \quad N^{\prime}>2 q+6 d+10,
$$

then (2) is satisfied for

$$
\sigma^{*}(x, \xi)=\iint e^{-i y \eta} \overline{\sigma(x+y, \xi+\eta)} d y d \eta .
$$

If additionally $N \geq \frac{\rho N^{\prime}+|m|+(1-\rho)(d+2)}{1-\delta}$, then

$$
\sigma^{*} \in S_{\rho, 0,\left\lfloor(1-\delta) N-\rho N^{\prime}-|m|-(1-\rho)(d+2)\right\rfloor, N^{\prime}-d-2}^{m+\delta N},
$$

while if additionally $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ and $N^{\prime} \geq|q|+2((1-\delta) N-|m|)-d-2$, then

$$
\sigma^{*} \in \dot{S}_{0,0,\lfloor(1-\delta) N-|m|-d-2\rfloor,\left\lfloor N^{\prime}-|q|-2((1-\delta) N-|m|)+d+2\right\rfloor}^{q, m+\delta N} .
$$

The adjoint theorem - cont.
Theorem 10. Moreover, if (for some $K \in \mathbf{N}_{0}$)

$$
\frac{\rho}{1+\rho}>\frac{\delta}{1-\delta}, \quad N \geq \frac{\rho N^{\prime}+|m|+(1-\rho)(d+2)+K+1}{1-\delta}, \quad N^{\prime} \geq K+d+3,
$$

then we have the following asymptotic expansion:

$$
\begin{equation*}
\sigma^{*}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_{x}^{\gamma} \overline{\sigma(x, \xi)}+r_{*}^{(K)}(x, \xi) \tag{3}
\end{equation*}
$$

where

$$
r_{*}^{(K)} \in S_{\rho, 0,\left\lfloor(1-\delta) N-\rho N^{\prime}-|m|-(1-\rho)(d+2)-K-1\right\rfloor, N^{\prime}-K-d-3}^{m+\delta N-\rho(K+1)}
$$

The adjoint theorem - cont.

Theorem 10. Moreover, if (for some $K \in \mathbf{N}_{0}$)

$$
\frac{\rho}{1+\rho}>\frac{\delta}{1-\delta}, \quad N \geq \frac{\rho N^{\prime}+|m|+(1-\rho)(d+2)+K+1}{1-\delta}, \quad N^{\prime} \geq K+d+3,
$$

then we have the following asymptotic expansion:

$$
\begin{equation*}
\sigma^{*}(x, \xi)=\sum_{|\gamma| \leq K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_{x}^{\gamma} \overline{\sigma(x, \xi)}+r_{*}^{(K)}(x, \xi) \tag{3}
\end{equation*}
$$

where

$$
r_{*}^{(K)} \in S_{\rho, 0,\left\lfloor(1-\delta) N-\rho N^{\prime}-|m|-(1-\rho)(d+2)-K-1\right\rfloor, N^{\prime}-K-d-3}^{m+\delta N-\rho(K+1)}
$$

In the case $\sigma \in \dot{S}_{\rho, \delta, N, N^{\prime}}^{q, m}$ the asymptotic expansion (3) is valid also for

$$
\frac{\rho}{1+\rho} \geq \frac{\delta}{1-\delta}, \quad N \geq \frac{|m|+d+2+(1+\rho)(K+1)}{1-\delta}, \quad N^{\prime} \geq|q|+2((1-\delta) N-|m|)-d-2-2 \rho(K+1)
$$

in which case we obtain
$r_{*}^{(K)} \in \dot{S}_{0,0,\lfloor(1-\delta) N-|m|-d-2-(1+\rho)(K+1)\rfloor,\left\lfloor N^{\prime}-|q|-2((1-\delta) N-|m|)+d+2+2 \rho(K+1)\right\rfloor}^{q-}$

