Basic calculus of pseudodifferential operators with nonsmooth symbols

Ivan Ivec

Faculty of Metallurgy University of Zagreb

13th International ISAAC Congress Ghent, August 2-6, 2021.

Joint work with Ivana Vojnović

<ロト (四) (三) (三) (三)

Symbol classes

Pseudodifferential operators

Oscillatory integrals

Double symbols

The composition and adjoints

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Symbol classes

$$\begin{split} S^m_{\rho,\delta,N,N'} & \dots \text{ for } |\alpha| \leq N, |\beta| \leq N' \text{ it holds} \\ & (\forall x \in \mathbf{R}^d) (\forall \xi \in \mathbf{R}^d) \quad |\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)| \leq C_{\alpha,\beta} \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|} , \\ \text{where } \langle \xi \rangle &= (1+|\xi|^2)^{\frac{1}{2}} \\ \text{norm: } |\sigma|_{N,N'}^{(m,\rho,\delta)} &= \max_{|\alpha| \leq N, |\beta| \leq N'} \sup_{x,\xi \in \mathbf{R}^d} \frac{|\partial_x^\alpha \partial_\xi^\beta \sigma(x,\xi)|}{\langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}} \end{split}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三 ● ● ●

Symbol classes

$$\begin{split} S^{m}_{\rho,\delta,N,N'} & \dots \text{ for } |\alpha| \leq N, |\beta| \leq N' \text{ it holds} \\ & (\forall x \in \mathbf{R}^{d})(\forall \xi \in \mathbf{R}^{d}) \quad |\partial_{x}^{\alpha}\partial_{\xi}^{\beta}\sigma(x,\xi)| \leq C_{\alpha,\beta}\langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|} , \\ \text{where } \langle \xi \rangle &= (1+|\xi|^{2})^{\frac{1}{2}} \\ \text{norm: } |\sigma|_{N,N'}^{(m,\rho,\delta)} &= \max_{|\alpha| \leq N, |\beta| \leq N'} \sup_{x,\xi \in \mathbf{R}^{d}} \frac{|\partial_{x}^{\alpha}\partial_{\xi}^{\beta}\sigma(x,\xi)|}{\langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}} \\ \dot{S}^{q,m}_{\rho,\delta,N,N'} & \dots \text{ for } |\alpha| \leq N, |\beta| \leq N' \text{ it holds} \\ & (\forall x \in \mathbf{R}^{d})(\forall \xi \in \mathbf{R}^{d}) \quad |\partial_{x}^{\alpha}\partial_{\xi}^{\beta}\sigma(x,\xi)| \leq C_{\alpha,\beta}\langle x \rangle^{q-|\alpha|} \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|} \end{split}$$

 $\mathsf{norm:} \ |\sigma|_{N,N'}^{(q,m,\rho,\delta)} = \max_{|\alpha| \le N, |\beta| \le N'} \sup_{x, \xi \in \mathbf{R}^d} \frac{|\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma(x,\xi)|}{\langle x \rangle^{q-|\alpha|} \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|}}$

$$\begin{split} S^{q,m}_{\rho,\delta,N,N'} & \dots \text{ for } |\alpha| \leq N, |\beta| \leq N' \text{ it holds} \\ (\forall x \in \mathbf{R}^d) (\forall \xi \in \mathbf{R}^d) \quad |\partial_x^{\alpha} \partial_{\xi}^{\beta} \sigma(x,\xi)| \leq C_{\alpha,\beta} \langle x \rangle^q \langle \xi \rangle^{m-\rho|\beta|+\delta|\alpha|} \\ & \cdot \end{split}$$

It contains both $S^m_{\rho,\delta,N,N'}$ (as a special case) and $\dot{S}^{q,m}_{\rho,\delta,N,N'}$ (as a subclass).

For $N,N'\in \mathbf{N}_0$ we define an equivalent family of semi-norms on $\mathcal{S}(\mathbb{R}^d)$ with

$$|\varphi|_{N,N'} = \sup_{|\alpha| \le N, |\beta| \le N'} \sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial^{\beta} \varphi(x)|,$$

and by $S_{N,N'}(\mathbf{R}^d)$ we denote the Banach space of all functions $\varphi \in C^{N'}(\mathbf{R}^d)$ for which $|\varphi|_{N,N'} < \infty$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

For $N,N'\in \mathbf{N}_0$ we define an equivalent family of semi-norms on $\mathcal{S}(\mathbb{R}^d)$ with

$$|\varphi|_{N,N'} = \sup_{|\alpha| \le N, |\beta| \le N'} \sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial^{\beta} \varphi(x)|,$$

and by $S_{N,N'}(\mathbf{R}^d)$ we denote the Banach space of all functions $\varphi \in C^{N'}(\mathbf{R}^d)$ for which $|\varphi|_{N,N'} < \infty$.

Together with standard notation for partial derivatives ∂_x^{α} we also use $D_x^{\alpha} = (-i)^{|\alpha|} \partial_x^{\alpha}$ and $\langle D_x \rangle^{2k} = (1 - \Delta_x)^k$, where Δ is the Laplace operator.

For $N, N' \in \mathbf{N}_0$ we define an equivalent family of semi-norms on $\mathcal{S}(\mathbb{R}^d)$ with

$$|\varphi|_{N,N'} = \sup_{|\alpha| \le N, |\beta| \le N'} \sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial^{\beta} \varphi(x)|,$$

and by $S_{N,N'}(\mathbf{R}^d)$ we denote the Banach space of all functions $\varphi \in C^{N'}(\mathbf{R}^d)$ for which $|\varphi|_{N,N'} < \infty$.

Together with standard notation for partial derivatives ∂_x^{α} we also use $D_x^{\alpha} = (-i)^{|\alpha|} \partial_x^{\alpha}$ and $\langle D_x \rangle^{2k} = (1 - \triangle_x)^k$, where \triangle is the Laplace operator.

By C we always denote a constant, even if it changes during calculation, while C_p is a constant depending on parameter p.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

For $N,N'\in \mathbf{N}_0$ we define an equivalent family of semi-norms on $\mathcal{S}(\mathbb{R}^d)$ with

$$|\varphi|_{N,N'} = \sup_{|\alpha| \le N, |\beta| \le N'} \sup_{x \in \mathbb{R}^d} |x^{\alpha} \partial^{\beta} \varphi(x)|,$$

and by $\mathcal{S}_{N,N'}(\mathbf{R}^d)$ we denote the Banach space of all functions $\varphi \in C^{N'}(\mathbf{R}^d)$ for which $|\varphi|_{N,N'} < \infty$.

Together with standard notation for partial derivatives ∂_x^{α} we also use $D_x^{\alpha} = (-i)^{|\alpha|} \partial_x^{\alpha}$ and $\langle D_x \rangle^{2k} = (1 - \triangle_x)^k$, where \triangle is the Laplace operator.

By C we always denote a constant, even if it changes during calculation, while C_p is a constant depending on parameter p.

By $\lfloor x \rfloor$ we denote the largest integer not greater than x, while $\lfloor x \rfloor_2$ is the largest even integer not greater than x.

ΨDO - definition and continuity

For $\sigma\in S^m_{\rho,\delta,N,N'}$ or $\sigma\in \dot{S}^{q,m}_{\rho,\delta,N,N'}$ we denote the corresponding pseudodifferential operator T_σ by

$$T_{\sigma}\varphi(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi}\sigma(x,\xi)\hat{\varphi}(\xi) \,\,d\xi, \,\,\varphi \in \mathcal{S}(\mathbf{R}^d),$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where $d\xi = (2\pi)^{-d} d\xi$.

ΨDO - definition and continuity

For $\sigma\in S^m_{\rho,\delta,N,N'}$ or $\sigma\in \dot{S}^{q,m}_{\rho,\delta,N,N'}$ we denote the corresponding pseudodifferential operator T_σ by

$$T_{\sigma}\varphi(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi}\sigma(x,\xi)\hat{\varphi}(\xi) \ d\xi, \ \varphi \in \mathcal{S}(\mathbf{R}^d),$$

where $d\xi = (2\pi)^{-d} d\xi$.

Lemma 1. $\mathcal{F}: \mathcal{S}_{N,N'}(\mathbf{R}^d) \to \mathcal{S}_{N',N-d-1}(\mathbf{R}^d)$ is a linear bounded mapping for $N \ge d+1$. More precisely, there is a constant $C_{N,N'} > 0$ such that

$$|\hat{\varphi}|_{N',N-d-1} \leq C_{N,N'} |\varphi|_{N,N'} \quad \text{for all } \varphi \in \mathcal{S}_{N,N'}(\mathbf{R}^d) \,.$$

ΨDO - definition and continuity

For $\sigma\in S^m_{\rho,\delta,N,N'}$ or $\sigma\in \dot{S}^{q,m}_{\rho,\delta,N,N'}$ we denote the corresponding pseudodifferential operator T_σ by

$$T_{\sigma}\varphi(x) = \int_{\mathbb{R}^d} e^{ix\cdot\xi}\sigma(x,\xi)\hat{\varphi}(\xi) \ d\xi, \ \varphi \in \mathcal{S}(\mathbf{R}^d),$$

where $d\xi = (2\pi)^{-d} d\xi$.

Lemma 1. $\mathcal{F}: \mathcal{S}_{N,N'}(\mathbf{R}^d) \to \mathcal{S}_{N',N-d-1}(\mathbf{R}^d)$ is a linear bounded mapping for $N \ge d+1$. More precisely, there is a constant $C_{N,N'} > 0$ such that

$$|\hat{arphi}|_{N',N-d-1} \leq C_{N,N'} |arphi|_{N,N'} \quad ext{for all } arphi \in \mathcal{S}_{N,N'}(\mathbf{R}^d) \,.$$

Theorem 1. Let $\sigma \in S^m_{\rho,\delta,N,N'}$. Then T_{σ} is a bounded mapping from $\mathcal{S}(\mathbf{R}^d)$ to $\mathcal{S}_{N',N}(\mathbf{R}^d)$, and from $\mathcal{S}_{M,M'}(\mathbf{R}^d)$ to $\mathcal{S}_{\min\{N', M-d-1\},\min\{N, M'-m-d-1\}}(\mathbf{R}^d)$, $M \ge d+1$, $M' \ge m+d+1$. More precisely, there is a constant $C_{k,l} > 0$ such that

$$|T_{\sigma}\varphi|_{k,l} \leq C_{k,l} |\sigma|_{l,k}^{(m,\rho,\delta)} |\varphi|_{d+1+k,m+d+1+l},$$

for all $k, l \in \mathbf{N}_0$ for which semi-norms are well-defined.

Theorem 1 holds also for $\sigma \in \dot{S}^{q,m}_{\rho,\delta,N,N'}$, $q \leq 0$ as in that case we have $\dot{S}^{q,m}_{\rho,\delta,N,N'} \subseteq S^m_{\rho,\delta,N,N'}$. For q > 0 we cannot estimate $\langle x \rangle^q$.

▲□▶▲圖▶▲≧▶▲≧▶ ≧ めへぐ

Theorem 1 holds also for $\sigma \in \dot{S}^{q,m}_{\rho,\delta,N,N'}$, $q \leq 0$ as in that case we have $\dot{S}^{q,m}_{\rho,\delta,N,N'} \subseteq S^m_{\rho,\delta,N,N'}$. For q > 0 we cannot estimate $\langle x \rangle^q$.

Theorem 1 shows that for $\sigma_1 \in S^{m_1}_{\rho_1,\delta_1,N_1,N'_1}$, $\sigma_2 \in S^{m_2}_{\rho_2,\delta_2,N_2,N'_2}$ we have that $T_{\sigma_1}T_{\sigma_2}: S(\mathbf{R}^d) \to S_{\min\{N'_1,N'_2-d-1\},\min\{N_1,N_2-m_1-d-1\}}(\mathbf{R}^d)$ is well-defined and bounded operator.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 1 holds also for $\sigma \in \dot{S}^{q,m}_{\rho,\delta,N,N'}$, $q \leq 0$ as in that case we have $\dot{S}^{q,m}_{\rho,\delta,N,N'} \subseteq S^m_{\rho,\delta,N,N'}$. For q > 0 we cannot estimate $\langle x \rangle^q$.

Theorem 1 shows that for $\sigma_1 \in S^{m_1}_{\rho_1,\delta_1,N_1,N'_1}$, $\sigma_2 \in S^{m_2}_{\rho_2,\delta_2,N_2,N'_2}$ we have that $T_{\sigma_1}T_{\sigma_2}: S(\mathbf{R}^d) \to S_{\min\{N'_1,N'_2-d-1\},\min\{N_1,N_2-m_1-d-1\}}(\mathbf{R}^d)$ is well-defined and bounded operator.

Goals:

1) to prove that this composition is again a pseudodifferential operator with a symbol in a suitable class and to obtain an exact formula and an asymptotic expansion for its symbol.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theorem 1 holds also for $\sigma \in \dot{S}^{q,m}_{\rho,\delta,N,N'}$, $q \leq 0$ as in that case we have $\dot{S}^{q,m}_{\rho,\delta,N,N'} \subseteq S^m_{\rho,\delta,N,N'}$. For q > 0 we cannot estimate $\langle x \rangle^q$.

Theorem 1 shows that for $\sigma_1 \in S^{m_1}_{\rho_1,\delta_1,N_1,N'_1}$, $\sigma_2 \in S^{m_2}_{\rho_2,\delta_2,N_2,N'_2}$ we have that $T_{\sigma_1}T_{\sigma_2}: S(\mathbf{R}^d) \to S_{\min\{N'_1,N'_2-d-1\},\min\{N_1,N_2-m_1-d-1\}}(\mathbf{R}^d)$ is well-defined and bounded operator.

Goals:

1) to prove that this composition is again a pseudodifferential operator with a symbol in a suitable class and to obtain an exact formula and an asymptotic expansion for its symbol.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

2) to do the same for a formal adjoint of T_{σ} , where $\sigma \in S^m_{\rho,\delta,N,N'}$.

Amplitudes

The space of amplitudes $\mathcal{A}_{N,N'}^{q,m,\delta}(\mathbf{R}^d \times \mathbf{R}^d)$, $q, m \in \mathbf{R}$, $\delta \in [0,1)$, $N, N' \in \mathbf{N}_0$, is the set of functions $a : \mathbf{R}^d \times \mathbf{R}^d \to \mathbf{C}$ such that

$$\left|\partial_{y}^{\alpha}\partial_{\eta}^{\beta}a(y,\eta)\right| \leq C_{\alpha,\beta}\langle y\rangle^{q}\langle \eta\rangle^{m+\delta|\alpha|}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

uniformly in $y, \eta \in \mathbf{R}^d$ for all $|\alpha| \leq N, |\beta| \leq N'$, and where all partial derivatives are understood to be continuous.

Amplitudes

The space of amplitudes $\mathcal{A}_{N,N'}^{q,m,\delta}(\mathbf{R}^d \times \mathbf{R}^d)$, $q, m \in \mathbf{R}$, $\delta \in [0,1)$, $N, N' \in \mathbf{N}_0$, is the set of functions $a : \mathbf{R}^d \times \mathbf{R}^d \to \mathbf{C}$ such that

$$\left|\partial_{y}^{\alpha}\partial_{\eta}^{\beta}a(y,\eta)\right| \leq C_{\alpha,\beta}\langle y\rangle^{q}\langle \eta\rangle^{m+\delta|\alpha}$$

uniformly in $y, \eta \in \mathbf{R}^d$ for all $|\alpha| \leq N, |\beta| \leq N'$, and where all partial derivatives are understood to be continuous.

 $\mathcal{A}^{q,m,\delta}_{N,N'}(\mathbf{R}^d\times\mathbf{R}^d)$ is the Banach space with the norm

$$|a|_{\mathcal{A}^{q,m,\delta}_{N,N'}} = \max_{|\alpha| \le N, |\beta| \le N'} \sup_{y,\eta \in \mathbf{R}^d} \frac{|\partial_y^{\alpha} \partial_\eta^{\beta} a(y,\eta)|}{\langle y \rangle^q \langle \eta \rangle^{m+\delta|\alpha|}}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Oscillatory integrals

Theorem 2. Let $a \in \mathcal{A}_{N,N'}^{q,m,\delta}(\mathbf{R}^d \times \mathbf{R}^d)$, $q, m \in \mathbf{R}$, $\delta \in [0,1)$, $N, N' \in 2\mathbf{N}_0$, $N > \frac{m+d}{1-\delta}$, N' > q + d, and let $\chi \in \mathcal{S}(\mathbf{R}^d \times \mathbf{R}^d)$ with $\chi(0,0) = 1$. Then $\iint e^{-iy\eta}a(u,n)du\,dn := \lim \iint \chi(\epsilon u, \epsilon n)e^{-iy\eta}a(u,n)du\,dn$

$$\iint e^{-iy\eta} a(y,\eta) dy \, d\eta := \lim_{\epsilon \to 0} \iint \chi(\epsilon y, \epsilon \eta) e^{-iy\eta} a(y,\eta) dy \, d\eta$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

exists

Oscillatory integrals

Theorem 2. Let $a \in \mathcal{A}_{N,N'}^{q,m,\delta}(\mathbf{R}^d \times \mathbf{R}^d)$, $q, m \in \mathbf{R}$, $\delta \in [0,1)$, $N, N' \in 2\mathbf{N}_0$, $N > \frac{m+d}{1-\delta}$, N' > q + d, and let $\chi \in \mathcal{S}(\mathbf{R}^d \times \mathbf{R}^d)$ with $\chi(0,0) = 1$. Then

$$\iint e^{-iy\eta} a(y,\eta) dy \, d\eta := \lim_{\epsilon \to 0} \iint \chi(\epsilon y, \epsilon \eta) e^{-iy\eta} a(y,\eta) dy \, d\eta$$

exists and

$$\iint e^{-iy\eta} a(y,\eta) dy \, d\eta = \iint e^{-iy\eta} \langle y \rangle^{-2l'} \langle D_\eta \rangle^{2l'} \big(\langle \eta \rangle^{-2l} \langle D_y \rangle^{2l} a(y,\eta) \big) dy \, d\eta \,,$$

where $l, l' \in \mathbf{N}_0$ are chosen so that the integrand is in $L^1(\mathbf{R}^d \times \mathbf{R}^d)$, namely $N \ge 2l > \frac{m+d}{1-\delta}$, $N' \ge 2l' > q+d$. Moreover, the definition does not depend on χ and

$$\left| \iint e^{-iy\eta} a(y,\eta) dy \, d\eta \right| \le C_{q,m,\delta} |a|_{\mathcal{A}^{q,m,\delta}_{2l,2l'}}.$$

We can notice that the previous theorem simplifies if q < -d or m < -d, and that for q, m < -d we actually have an absolutely convergent integral.

(ロ)、(型)、(E)、(E)、 E) の(()

We can notice that the previous theorem simplifies if q < -d or m < -d, and that for q, m < -d we actually have an absolutely convergent integral.

For example, if q < -d, we can take $\chi \in S(\mathbf{R}^d)$ with $\chi(0) = 1$ and equivalently define the oscillatory integral as

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We can notice that the previous theorem simplifies if q < -d or m < -d, and that for q, m < -d we actually have an absolutely convergent integral.

For example, if q < -d, we can take $\chi \in S(\mathbf{R}^d)$ with $\chi(0) = 1$ and equivalently define the oscillatory integral as

$$\iint e^{-iy\eta} a(y,\eta) dy \, d\eta := \lim_{\epsilon \to 0} \iint \chi(\epsilon \eta) e^{-iy\eta} a(y,\eta) dy \, d\eta \, .$$

In this case the oscillatory integral is equal to an iterated integral, whenever the latter exists.

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

We can notice that the previous theorem simplifies if q < -d or m < -d, and that for q, m < -d we actually have an absolutely convergent integral.

For example, if q < -d, we can take $\chi \in S(\mathbf{R}^d)$ with $\chi(0) = 1$ and equivalently define the oscillatory integral as

$$\iint e^{-iy\eta} a(y,\eta) dy \, d\eta := \lim_{\epsilon \to 0} \iint \chi(\epsilon \eta) e^{-iy\eta} a(y,\eta) dy \, d\eta \, .$$

In this case the oscillatory integral is equal to an iterated integral, whenever the latter exists.

For simplicity, in the sequel we sometimes consider only the case $q,m\geq -d$ as the most interesting one.

Change of variables

For $\chi(y,\eta) \in \mathcal{S}(\mathbf{R}^d \times \mathbf{R}^d)$ with $\chi(0,0) = 1$ a function $\chi(A(y,\eta))$, where A is the regular real matrix, has the same properties and so we are allowed to make a linear change of variables $(y,\eta) = A(y',\eta')$ in the oscillatory integral as long as $y\eta = y'\eta'$, in which case we have

$$\iint e^{-iy\eta} a(y,\eta) dy \, d\eta = \iint e^{-iy'\eta'} a(A(y',\eta')) |\det A| dy' d\eta' \, .$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Change of variables

For $\chi(y,\eta) \in \mathcal{S}(\mathbf{R}^d \times \mathbf{R}^d)$ with $\chi(0,0) = 1$ a function $\chi(A(y,\eta))$, where A is the regular real matrix, has the same properties and so we are allowed to make a linear change of variables $(y,\eta) = A(y',\eta')$ in the oscillatory integral as long as $y\eta = y'\eta'$, in which case we have

$$\iint e^{-iy\eta} a(y,\eta) dy \, d\eta = \iint e^{-iy'\eta'} a(A(y',\eta')) |\det A| dy' d\eta' \, .$$

Moreover, this change of variables can be performed without the requirement $y\eta = y'\eta'$ if we replace $y\eta$ in the definition of the oscillatory integral with a general nondegenerate real quadratic form. In that case we are not able to obtain the representation from Theorem 2.

The Fubini theorem

Theorem 3. Let $a \in \mathcal{A}_{N,N'}^{q,m,\delta}(\mathbf{R}^{d+k} \times \mathbf{R}^{d+k})$, $q, m \in \mathbf{R}$, $\delta \in [0,1)$ and $N, N' \in \mathbf{N}_0$ with

$$N \ge \frac{|m| + k + 2}{1 - \delta}, \ N' \ge |q| + k + 2.$$

Then

$$b(y,\eta) := \iint e^{-iy'\eta'} a(y,y',\eta,\eta') dy' d\eta' \in \mathcal{A}^{q,m+\delta N,0}_{N-2l,N'-2l'}(\mathbf{R}^d \times \mathbf{R}^d),$$

where integration is with respect to $\mathbf{R}^k \times \mathbf{R}^k$, $2l > |m| + \delta N + k$, 2l' > |q| + k, and

$$\partial_y^{\alpha} \partial_{\eta}^{\beta} b(y,\eta) = \iint e^{-iy'\eta'} \partial_y^{\alpha} \partial_{\eta}^{\beta} a(y,y',\eta,\eta') dy' d\eta',$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for $|\alpha| \leq N - 2l$, $|\beta| \leq N' - 2l'$.

The Fubini theorem - cont.

Theorem 3. Moreover, if $\delta \in [0, \frac{1}{2})$, $q, m \geq -d$ and $N, N' \in 2\mathbf{N}_0$ with

$$N > \frac{m + |m| + \max\{d, k\} + d + k + 2}{1 - 2\delta}, \ N' > q + |q| + \max\{d, k\} + d + k + 2,$$

then

$$\begin{split} \iiint \int e^{-iy\eta - iy'\eta'} a(y, y', \eta, \eta') dy dy' d\eta d\eta' \\ &= \iint e^{-iy\eta} \Big(\iint e^{-iy'\eta'} a(y, y', \eta, \eta') dy' d\eta' \Big) dy \, d\eta \, . \end{split}$$

Operators with double symbols

$$T^{D}_{\sigma}\varphi(x) = \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} e^{i(x-x')\cdot\xi + i(x'-x'')\cdot\xi'} \sigma(x,\xi,x',\xi')\varphi(x'')dx''d\xi'dx'd\xi,$$

where $\varphi \in S(\mathbf{R}^d)$, the integrals have to be understood as iterated integrals and the symbol σ belongs to one of the following two classes.

Operators with double symbols

$$T^{D}_{\sigma}\varphi(x) = \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} e^{i(x-x')\cdot\xi+i(x'-x'')\cdot\xi'} \sigma(x,\xi,x',\xi')\varphi(x'')dx''d\xi'dx'd\xi,$$

where $\varphi \in S(\mathbf{R}^d)$, the integrals have to be understood as iterated integrals and the symbol σ belongs to one of the following two classes.

$$\begin{split} S^{q_1,m_1,q_2,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'} & \cdots \\ |\partial^{\alpha}_x \partial^{\beta}_{\xi} \partial^{\alpha'}_{x'} \partial^{\beta'}_{\xi'} \sigma(x,\xi,x',\xi')| &\leq C \langle x \rangle^{q_1} \langle \xi \rangle^{m_1-\rho_1|\beta|+\delta_1|\alpha|} \langle x' \rangle^{q_2} \langle \xi' \rangle^{m_2-\rho_2|\beta'|+\delta_2|\alpha'|} \\ \text{In the case } q_1 = q_2 = 0 \text{ we denote this class as } S^{m_1,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'}. \end{split}$$

Operators with double symbols

$$T^{D}_{\sigma}\varphi(x) = \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} e^{i(x-x')\cdot\xi + i(x'-x'')\cdot\xi'} \sigma(x,\xi,x',\xi')\varphi(x'')dx''d\xi'dx'd\xi,$$

where $\varphi \in S(\mathbf{R}^d)$, the integrals have to be understood as iterated integrals and the symbol σ belongs to one of the following two classes.

$$\begin{split} S^{q_1,m_1,q_2,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'} & \cdots \\ |\partial^{\alpha}_x \partial^{\beta}_{\xi} \partial^{\alpha'}_{x'} \partial^{\beta'}_{\xi'} \sigma(x,\xi,x',\xi')| &\leq C \langle x \rangle^{q_1} \langle \xi \rangle^{m_1-\rho_1|\beta|+\delta_1|\alpha|} \langle x' \rangle^{q_2} \langle \xi' \rangle^{m_2-\rho_2|\beta'|+\delta_2|\alpha'|} \\ \text{In the case } q_1 &= q_2 = 0 \text{ we denote this class as } S^{m_1,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'} \\ & \dot{S}^{q_1,m_1,q_2,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'} & \cdots \\ & |\partial^{\alpha}_x \partial^{\beta}_{\xi} \partial^{\alpha'}_{x'} \partial^{\beta'}_{\xi'} \sigma(x,\xi,x',\xi')| \\ & \leq C \langle x \rangle^{q_1-|\alpha|} \langle \xi \rangle^{m_1-\rho_1|\beta|+\delta_1|\alpha|} \langle x' \rangle^{q_2-|\alpha'|} \langle \xi' \rangle^{m_2-\rho_2|\beta'|+\delta_2|\alpha'|} \end{split}$$

(ロ) (型) (E) (E) (E) (E) (O)

The Fubini theorem for double symbols

Theorem 4. Let $a \in S^{q_1,m_1,q_2,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N'_1,N_2,N'_2}$ with $N_1, N_2, N'_1, N'_2 \in 2\mathbf{N}_0$. If $N_2 > \frac{m_2 + d}{1 - \delta_2}, \quad N'_2 > q_2 + d$,

then

$$b(y,\eta) := \iint e^{-iy'\eta'} a(y,y',\eta,\eta') dy' d\eta' \in \mathcal{A}_{N_1,N_1'}^{q_1,m_1,\delta_1}(\mathbf{R}^d \times \mathbf{R}^d),$$

and

$$\partial_y^{\alpha} \partial_{\eta}^{\beta} b(y,\eta) = \iint e^{-iy'\eta'} \partial_y^{\alpha} \partial_{\eta}^{\beta} a(y,y',\eta,\eta') dy' d\eta',$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

for $|\alpha| \leq N_1, |\beta| \leq N'_1$.

The Fubini theorem for double symbols - cont.

Theorem 4. Moreover, if $q_1, q_2, m_1, m_2 \ge -d$ and

$$N_1, N_2 > \frac{\tilde{m} + (3-\delta)d + 4(1-\delta)}{(1-\delta)^2}, \ N'_1, N'_2 > \tilde{q} + 3d + 4,$$

where $\tilde{q} = \max\{q_1, q_2, q_1 + q_2\}$, $\tilde{m} = \max\{m_1, m_2, m_1 + m_2\}$ and $\delta = \max\{\delta_1, \delta_2\}$, then

$$\begin{aligned} \iiint \int e^{-iy\eta - iy'\eta'} a(y, y', \eta, \eta') dy dy' d\eta d\eta' \\ &= \iint e^{-iy\eta} \Big(\iint e^{-iy'\eta'} a(y, y', \eta, \eta') dy' d\eta' \Big) dy d\eta \end{aligned}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Asymptotic expansion I

We want to show that for regular enough symbols we have $T_{\sigma}^{D}=T_{\sigma_{L}}$ where

$$\sigma_L(x,\xi) := \iint e^{-iy\eta} \sigma(x,\xi+\eta,x+y,\xi) dy \,d\eta \,. \tag{1}$$

In the next two theorems we first derive asymptotic expansions for σ_L .

Asymptotic expansion I

We want to show that for regular enough symbols we have $T_{\sigma}^{D} = T_{\sigma_{L}}$ where

$$\sigma_L(x,\xi) := \iint e^{-iy\eta} \sigma(x,\xi+\eta,x+y,\xi) dy \,d\eta \,. \tag{1}$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

In the next two theorems we first derive asymptotic expansions for σ_L .

Theorem 5. Let $\sigma \in S^{m_1,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N'_1,N_2,N'_2}$, $\rho = \min\{\rho_1,\rho_2\}$, $\delta = \max\{\delta_1,\delta_2\}$, and let σ_L be defined by (1). If

$$N_2 \ge \rho_1 N_1' + |m_1| + (1 - \rho_1)(d + 2), \qquad N_1' \ge d + 2,$$

then

$$\sigma_L \in S^{m_1+m_2+\delta_2(|m_1|+d+2)}_{\rho-\rho_1\delta_2,\,\delta+\delta_1\delta_2,\,\left\lfloor\frac{N_2-\rho_1N_1'-|m_1|-(1-\rho_1)(d+2)}{1+\delta_1}\right\rfloor,\,N_1'-d-2}$$

Asymptotic expansion I - cont.

Theorem 5. Moreover, if (for some $K \in \mathbf{N}_0$)

$$\rho_1 > \frac{\delta_2}{1 - \delta_2}, \quad N_2 \ge \rho_1 N_1' + |m_1| + (1 - \rho_1)(d + 2) + K + 1, \quad N_1' \ge K + d + 3,$$

then we have

$$\sigma_L(x,\xi) = \sum_{|\gamma| \le K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_{x'}^{\gamma} \sigma(x,\xi,x,\xi) + r_L^{(K)}(x,\xi) ,$$

where

$$r_L^{(K)} \in S^{m_1+m_2+\delta_2(|m_1|+d+2)-(\rho_1-\delta_2-\rho_1\delta_2)(K+1)}_{\rho-\rho_1\delta_2,\,\delta+\delta_1\delta_2,\,\left\lfloor\frac{N_2-\rho_1N_1'-|m_1|-(1-\rho_1)(d+2)-K-1}{1+\delta_1}\right\rfloor,N_1'-K-d-3}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Asymptotic expansion II

Theorem 6. Let $\sigma \in \dot{S}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'}^{q_1,m_1,q_2,m_2}$, $\rho = \min\{\rho_1,\rho_2\}$, $\delta = \max\{\delta_1,\delta_2\}$, and let σ_L be defined by (1). If $N_2 \ge |m_1| + d + 2$, $N_1' \ge |q_2| + \frac{2(N_2 - |m_1|) - (1 - \delta_1)(d + 2)}{1 + \delta_1}$,

then

$$\sigma_L \in \overset{\circ}{S}{}^{q_1+q_2, m_1+m_2+\delta_2(|m_1|+d+2)}_{0, \delta+\delta_1\delta_2, \left\lfloor \frac{N_2-|m_1|-d-2}{1+\delta_1} \right\rfloor, \left\lfloor N'_1-|q_2|-\frac{2(N_2-|m_1|)-(1-\delta_1)(d+2)}{1+\delta_1} \right\rfloor}{\cdot}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Asymptotic expansion II

Theorem 6. Let $\sigma \in \dot{S}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'}^{q_1,m_1,q_2,m_2}$, $\rho = \min\{\rho_1,\rho_2\}$, $\delta = \max\{\delta_1,\delta_2\}$, and let σ_L be defined by (1). If $N_2 \ge |m_1| + d + 2$, $N_1' \ge |q_2| + \frac{2(N_2 - |m_1|) - (1 - \delta_1)(d + 2)}{1 + \delta_1}$,

then

$$\sigma_L \in \dot{S}^{q_1+q_2, m_1+m_2+\delta_2(|m_1|+d+2)}_{0, \delta+\delta_1\delta_2, \left\lfloor \frac{N_2-|m_1|-d-2}{1+\delta_1} \right\rfloor, \left\lfloor N'_1-|q_2|-\frac{2(N_2-|m_1|)-(1-\delta_1)(d+2)}{1+\delta_1} \right\rfloor}.$$

Moreover, if (for some $K \in \mathbf{N}_0$) $ho_1 \geq rac{\delta_2}{1-\delta_2}$ and

 $N_2 \geq |m_1| + d + 2 + (1 + \rho_1)(K + 1), \quad N_1' \geq |q_2| + \frac{2(N_2 - |m_1|) - (1 - \delta_1)(d + 2) - 2(\rho_1 - \delta_1)(K + 1)}{1 + \delta_1} \;,$

then we have

$$\sigma_L(x,\xi) = \sum_{|\gamma| \le K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_{x'}^{\gamma} \sigma(x,\xi,x,\xi) + r_L^{(K)}(x,\xi) \,,$$

where

$$r_{L}^{(K)} \in \stackrel{\cdot}{S}{}^{q_{1}+q_{2}-K-1, m_{1}+m_{2}+\delta_{2}(|m_{1}|+d+2)-(\rho_{1}-\delta_{2}-\rho_{1}\delta_{2})(K+1)}_{0, \delta+\delta_{1}\delta_{2}, \left\lfloor \frac{N_{2}-|m_{1}|-d-2-(1+\rho_{1})(K+1)}{1+\delta_{1}} \right\rfloor, \left\lfloor N_{1}^{\prime}-|q_{2}|-\frac{2(N_{2}-|m_{1}|)-(1-\delta_{1})(d+2)-2(\rho_{1}-\delta_{1})(K+1)}{1+\delta_{1}} \right\rfloor}_{(K)} = 0$$

 $T_{\sigma}^{D} = T_{\sigma_{L}}$

 $\begin{array}{l} \text{Theorem 7. Let } \sigma(x,\xi,x',\xi') = \sigma_1(x,\xi)\sigma_2(x',\xi') \in S^{q_1,m_1,q_2,m_2}_{\rho_1,\delta_1,\rho_2,\delta_2,N_1,N_1',N_2,N_2'}.\\ \text{If } N_1',N_2,N_2',M' \in 2\mathbf{N}_0, \, q_1 \leq 0, \, q_2 \in [-d,0], \, m_1,m_2 \geq -d \text{ and } \end{array}$

 $N_2 > \frac{m^* + 3d + 4}{1 - \delta_2}, \quad N_2' > 3d + 4, \quad N_1' > N_2' + q_2 + 3d + 4, \quad M > 2d + 1, \quad M' > \tilde{m} + (1 + \delta_2)N_2 + 3d + 4,$

then

$$T^D_{\sigma}\varphi(x) = T_{\sigma_L}\varphi(x)\,,$$

where $m^* = \max\{|m_1|, |m_1| + m_1 + m_2\}$, $\tilde{m} = \max\{m_1, m_2, m_1 + m_2\}$ and $\varphi \in S_{M,M'}(\mathbf{R}^d)$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The composition theorem I

Theorem 8. Let $\sigma_1 \in S^{m_1}_{\rho_1,\delta_1,N_1,N'_1}$, $\sigma_2 \in S^{m_2}_{\rho_2,\delta_2,N_2,N'_2}$, $m_1, m_2 \ge -d$, $m^* = \max\{|m_1|, |m_1| + m_1 + m_2\}$, $\tilde{m} = \max\{m_1, m_2, m_1 + m_2\}$, $\rho = \min\{\rho_1, \rho_2\}$, $\delta = \max\{\delta_1, \delta_2\}$ and $\varphi \in S_{M,M'}(\mathbf{R}^d)$. If $N'_1, N_2, N'_2, M' \in 2\mathbf{N}_0$ and

 $N_2 > \frac{m^* + 3d + 4}{1 - \delta_2}, \quad N_2' > 3d + 4, \quad N_1' > N_2' + 3d + 4, \quad M > 2d + 1, \quad M' > \tilde{m} + (1 + \delta_2)N_2 + 3d + 4,$

then

$$(T_{\sigma_1} \circ T_{\sigma_2})\varphi(x) = T_{\sigma_1 \# \sigma_2}\varphi(x) \,,$$

where

$$\sigma_1 \# \sigma_2(x,\xi) = \iint e^{-iy\eta} \sigma_1(x,\xi+\eta) \sigma_2(x+y,\xi) dy \, d\eta$$

The composition theorem I

Theorem 8. Let $\sigma_1 \in S_{\rho_1,\delta_1,N_1,N_1'}^{m_1}$, $\sigma_2 \in S_{\rho_2,\delta_2,N_2,N_2'}^{m_2}$, $m_1,m_2 \ge -d$, $m^* = \max\{|m_1|, |m_1| + m_1 + m_2\}$, $\tilde{m} = \max\{m_1, m_2, m_1 + m_2\}$, $\rho = \min\{\rho_1, \rho_2\}$, $\delta = \max\{\delta_1, \delta_2\}$ and $\varphi \in S_{M,M'}(\mathbf{R}^d)$. If $N_1', N_2, N_2', M' \in 2\mathbf{N}_0$ and

 $N_2 > \frac{m^* + 3d + 4}{1 - \delta_2}, \quad N_2' > 3d + 4, \quad N_1' > N_2' + 3d + 4, \quad M > 2d + 1, \quad M' > \tilde{m} + (1 + \delta_2)N_2 + 3d + 4,$

then

$$(T_{\sigma_1} \circ T_{\sigma_2})\varphi(x) = T_{\sigma_1 \# \sigma_2}\varphi(x),$$

where

$$\sigma_1 \# \sigma_2(x,\xi) = \iint e^{-iy\eta} \sigma_1(x,\xi+\eta) \sigma_2(x+y,\xi) dy \, d\eta \, .$$

If additionally $N_2 \ge \rho_1 N_1' + |m_1| + (1 - \rho_1)(d + 2)$, then

$$\sigma_1 \# \sigma_2 \in S^{m_1 + m_2 + \delta_2(|m_1| + d + 2)}_{\rho - \rho_1 \delta_2, \, \delta + \delta_1 \delta_2, \, \left\lfloor \frac{N_2 - \rho_1 N_1' - |m_1| - (1 - \rho_1)(d + 2)}{1 + \delta_1} \right\rfloor, N_1' - d - 2$$

The composition theorem I - cont.

Theorem 8. Moreover, if (for some $K \in \mathbf{N}_0$)

$$\rho_1 > \frac{\delta_2}{1 - \delta_2}, \quad N_2 \ge \rho_1 N_1' + |m_1| + (1 - \rho_1)(d + 2) + K + 1, \quad N_1' \ge K + d + 3,$$

then we have the following asymptotic expansion:

$$\sigma_1 \# \sigma_2(x,\xi) = \sum_{|\gamma| \le K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} \sigma_1(x,\xi) D_x^{\gamma} \sigma_2(x,\xi) + r^{(K)}(x,\xi) ,$$

where

$$r^{(K)} \in S^{m_1+m_2+\delta_2(|m_1|+d+2)-(\rho_1-\delta_2-\rho_1\delta_2)(K+1)}_{\rho-\rho_1\delta_2,\,\delta+\delta_1\delta_2,\,\left\lfloor\frac{N_2-\rho_1N_1'-|m_1|-(1-\rho_1)(d+2)-K-1}{1+\delta_1}\right\rfloor,N_1'-K-d-3}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The composition theorem II

Theorem 9. Let
$$\sigma_1 \in \hat{S}_{\rho_1, \delta_1, N_1, N_1'}^{q_1, m_1}$$
, $\sigma_2 \in \hat{S}_{\rho_2, \delta_2, N_2, N_2'}^{q_2, m_2}$, $q_1 \leq 0$, $q_2 \in [-d, 0]$,
 $m_1, m_2 \geq -d$, $m^* = \max\{|m_1|, |m_1| + m_1 + m_2\}$,
 $\tilde{m} = \max\{m_1, m_2, m_1 + m_2\}$, $\rho = \min\{\rho_1, \rho_2\}$, $\delta = \max\{\delta_1, \delta_2\}$ and
 $\varphi \in S_{M,M'}(\mathbf{R}^d)$. If $N'_1, N_2, N'_2, M' \in 2\mathbf{N}_0$ and

$$\begin{split} N_2 &> \frac{m^* + 3d + 4}{1 - \delta_2}, \quad N_2' &> 3d + 4, \quad N_1' > N_2' + q_2 + 3d + 4, \quad M > 2d + 1, \quad M' > \tilde{m} + (1 + \delta_2)N_2 + 3d + 4 \,, \end{split}$$
 then

 $(T_{\sigma_1} \circ T_{\sigma_2})\varphi(x) = T_{\sigma_1 \# \sigma_2}\varphi(x) \,,$

where

$$\sigma_1 \# \sigma_2(x,\xi) = \iint e^{-iy\eta} \sigma_1(x,\xi+\eta) \sigma_2(x+y,\xi) dy \, d\eta \, .$$

The composition theorem II

Theorem 9. Let
$$\sigma_1 \in \dot{S}_{\rho_1, \delta_1, N_1, N_1'}^{q_1, m_1}$$
, $\sigma_2 \in \dot{S}_{\rho_2, \delta_2, N_2, N_2'}^{q_2, m_2}$, $q_1 \leq 0$, $q_2 \in [-d, 0]$,
 $m_1, m_2 \geq -d$, $m^* = \max\{|m_1|, |m_1| + m_1 + m_2\}$,
 $\tilde{m} = \max\{m_1, m_2, m_1 + m_2\}$, $\rho = \min\{\rho_1, \rho_2\}$, $\delta = \max\{\delta_1, \delta_2\}$ and
 $\varphi \in S_{M,M'}(\mathbf{R}^d)$. If $N'_1, N_2, N'_2, M' \in 2\mathbf{N}_0$ and

$$\begin{split} N_2 > & \frac{m^* + 3d + 4}{1 - \delta_2}, \quad N_2' > 3d + 4, \quad N_1' > N_2' + q_2 + 3d + 4, \quad M > 2d + 1, \quad M' > & \tilde{m} + (1 + \delta_2)N_2 + 3d + 4 \,, \end{split}$$

then

$$(T_{\sigma_1} \circ T_{\sigma_2})\varphi(x) = T_{\sigma_1 \# \sigma_2}\varphi(x) \,,$$

where

$$\sigma_1 \# \sigma_2(x,\xi) = \iint e^{-iy\eta} \sigma_1(x,\xi+\eta) \sigma_2(x+y,\xi) dy \, d\eta \, .$$

If additionally $N_1' \ge |q_2| + \frac{2(N_2 - |m_1|) - (1 - \delta_1)(d + 2)}{1 + \delta_1}$, then

$$\sigma_1 \# \sigma_2 \in \dot{S}_{0,\delta+\delta_1\delta_2, \left\lfloor \frac{N_2 - |m_1| - d - 2}{1 + \delta_1} \right\rfloor, \left\lfloor N_1' - |q_2| - \frac{2(N_2 - |m_1|) - (1 - \delta_1)(d + 2)}{1 + \delta_1} \right\rfloor}{0, \delta + \delta_1\delta_2, \left\lfloor \frac{N_2 - |m_1| - d - 2}{1 + \delta_1} \right\rfloor, \left\lfloor N_1' - |q_2| - \frac{2(N_2 - |m_1|) - (1 - \delta_1)(d + 2)}{1 + \delta_1} \right\rfloor}.$$

The composition theorem II - cont.

Theorem 9. Moreover, if (for some $K \in \mathbf{N}_0$) $\rho_1 \geq \frac{\delta_2}{1-\delta_2}$ and

 $N_2 \geq |m_1| + d + 2 + (1 + \rho_1)(K + 1), \quad N_1' \geq |q_2| + \frac{2(N_2 - |m_1|) - (1 - \delta_1)(d + 2) - 2(\rho_1 - \delta_1)(K + 1)}{1 + \delta_1} \;,$

then we have the following asymptotic expansion:

$$\sigma_1 \# \sigma_2(x,\xi) = \sum_{|\gamma| \le K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} \sigma_1(x,\xi) D_x^{\gamma} \sigma_2(x,\xi) + r^{(K)}(x,\xi) ,$$

where

$$r^{(K)} \in \stackrel{\cdot}{S}{}^{q_1+q_2-K-1, m_1+m_2+\delta_2(|m_1|+d+2)-(\rho_1-\delta_2-\rho_1\delta_2)(K+1)}_{0, \ \delta+\delta_1\delta_2, \ \left\lfloor\frac{N_2-|m_1|-d-2-(1+\rho_1)(K+1)}{1+\delta_1}\right\rfloor, \ \left\lfloor N'_1-|q_2|-\frac{2(N_2-|m_1|)-(1-\delta_1)(d+2)-2(\rho_1-\delta_1)(K+1)}{1+\delta_1}\right\rfloor, \ \left\lfloor N'_1-|q_2|-\frac{2(N_2-|m_1|)-(1-\delta_1)(d+2)-2(\rho_1-\delta_1)(K+1)}{1+\delta_1}\right\rfloor$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The adjoint

Now we define a formal adjoint of the operator with symbol $\sigma \in S^{q,m}_{\rho,\delta,N,N'}$, $q \leq 0$. From Theorem 1 it follows that T_{σ} maps $\mathcal{S}(\mathbf{R}^d)$ to $\mathcal{S}_{N',N}(\mathbf{R}^d)$. Also, $\mathcal{S}_{N',N}(\mathbf{R}^d) \subseteq L^2(\mathbf{R}^d)$ for $N' > \frac{d}{2}$. This motivates the following definition.

The adjoint

Now we define a formal adjoint of the operator with symbol $\sigma \in S^{q,m}_{\rho,\delta,N,N'}$, $q \leq 0$. From Theorem 1 it follows that T_{σ} maps $\mathcal{S}(\mathbf{R}^d)$ to $\mathcal{S}_{N',N}(\mathbf{R}^d)$. Also, $\mathcal{S}_{N',N}(\mathbf{R}^d) \subseteq L^2(\mathbf{R}^d)$ for $N' > \frac{d}{2}$. This motivates the following definition.

Definition

Let $\sigma\in S^{q,m}_{\rho,\delta,N,N'}$, $\sigma^*\in S^{q,m'}_{\rho',\delta',M,M'}$, $q\leq 0$, $M',N'>\frac{d}{2}.$ Then T_{σ^*} is called a formal adjoint of T_{σ} if

$$(\forall \varphi_1, \varphi_2 \in \mathcal{S}(\mathbf{R}^d)) \quad \langle T_\sigma \varphi_1 | \varphi_2 \rangle = \langle \varphi_1 | T_{\sigma^*} \varphi_2 \rangle,$$
(2)

where $\langle \cdot | \cdot \rangle$ is the standard inner product on $L^2(\mathbf{R}^d)$.

The adjoint theorem

$$\begin{array}{ll} \text{Theorem 10. Let } \sigma \in S^{q,m}_{\rho,\delta,N,N'}, \; q \in [-d,0], \; m \geq -d, \\ m^* = \max\{|m|,|m|+m\}. \; \textit{ If } N, N' \in 2\mathbf{N}_0, \; \delta < \frac{3-\sqrt{5}}{2} \; \textit{ and} \\ \\ N > \frac{[m^* + (3-\delta)d + 4(1-\delta)](1-\delta)^2}{1-3\delta + \delta^2}, \quad N' > 2q + 6d + 10\,, \end{array}$$

then (2) is satisfied for

$$\sigma^*(x,\xi) = \iint e^{-iy\eta} \overline{\sigma(x+y,\xi+\eta)} dy \, d\eta \, .$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

The adjoint theorem

$$\begin{array}{ll} \text{Theorem 10. Let } \sigma \in S^{q,m}_{\rho,\delta,N,N'}, \; q \in [-d,0], \; m \geq -d, \\ m^* = \max\{|m|,|m|+m\}. \; \textit{ If } N, N' \in 2\mathbf{N}_0, \; \delta < \frac{3-\sqrt{5}}{2} \; \textit{ and} \\ \\ N > \frac{[m^* + (3-\delta)d + 4(1-\delta)](1-\delta)^2}{1-3\delta + \delta^2}, \quad N' > 2q + 6d + 10\,, \end{array}$$

then (2) is satisfied for

$$\sigma^*(x,\xi) = \iint e^{-iy\eta} \overline{\sigma(x+y,\xi+\eta)} dy \, d\eta$$

If additionally $N \geq rac{
ho N' + |m| + (1ho)(d+2)}{1-\delta}$, then

$$\sigma^* \in S^{m+\delta N}_{\rho, 0, \lfloor (1-\delta)N-\rho N'-|m|-(1-\rho)(d+2)\rfloor, N'-d-2},$$

The adjoint theorem

$$\begin{array}{ll} \text{Theorem 10. Let } \sigma \in S^{q,m}_{\rho,\delta,N,N'}, \; q \in [-d,0], \; m \geq -d, \\ m^* = \max\{|m|,|m|+m\}. \; \textit{ If } N, N' \in 2\mathbf{N}_0, \; \delta < \frac{3-\sqrt{5}}{2} \; \textit{ and} \\ \\ N > \frac{[m^* + (3-\delta)d + 4(1-\delta)](1-\delta)^2}{1-3\delta + \delta^2}, \quad N' > 2q + 6d + 10\,, \end{array}$$

then (2) is satisfied for

$$\sigma^*(x,\xi) = \iint e^{-iy\eta} \overline{\sigma(x+y,\xi+\eta)} dy \, d\eta$$

If additionally $N \geq \frac{\rho N' + |m| + (1-\rho)(d+2)}{1-\delta}$, then

$$\sigma^* \in S^{m+\delta N}_{\rho, 0, \lfloor (1-\delta)N-\rho N'-|m|-(1-\rho)(d+2)\rfloor, N'-d-2},$$

while if additionally $\sigma \in \dot{S}^{q,m}_{\rho,\delta,N,N'}$ and $N' \ge |q| + 2((1-\delta)N - |m|) - d - 2$, then

$$\sigma^* \in \dot{S}^{q,\,m+\delta N}_{0,\,0,\,\lfloor (1-\delta)N-|m|-d-2\rfloor,\,\lfloor N'-|q|-2((1-\delta)N-|m|)+d+2\rfloor}.$$

The adjoint theorem - cont.

Theorem 10. Moreover, if (for some $K \in \mathbf{N}_0$)

$$\frac{\rho}{1+\rho} > \frac{\delta}{1-\delta}, \quad N \ge \frac{\rho N' + |m| + (1-\rho)(d+2) + K + 1}{1-\delta}, \quad N' \ge K + d + 3,$$

then we have the following asymptotic expansion:

$$\sigma^*(x,\xi) = \sum_{|\gamma| \le K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_x^{\gamma} \overline{\sigma(x,\xi)} + r_*^{(K)}(x,\xi) , \qquad (3)$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

where

$$r_*^{(K)} \in S^{m+\delta N-\rho(K+1)}_{\rho,\,0,\,\lfloor(1-\delta)N-\rho N'-|m|-(1-\rho)(d+2)-K-1\rfloor,\,N'-K-d-3}\,.$$

The adjoint theorem - cont.

Theorem 10. Moreover, if (for some $K \in \mathbf{N}_0$)

$$\frac{\rho}{1+\rho} > \frac{\delta}{1-\delta}, \quad N \ge \frac{\rho N' + |m| + (1-\rho)(d+2) + K + 1}{1-\delta}, \quad N' \ge K + d + 3,$$

then we have the following asymptotic expansion:

$$\sigma^*(x,\xi) = \sum_{|\gamma| \le K} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} D_x^{\gamma} \overline{\sigma(x,\xi)} + r_*^{(K)}(x,\xi) , \qquad (3)$$

where

In the case $\sigma\in \dot{S}^{q,m}_{
ho,\delta,N,N'}$ the asymptotic expansion (3) is valid also for

$$\frac{\rho}{1+\rho} \geq \frac{\delta}{1-\delta}\,, \quad N \geq \frac{|m|+d+2+(1+\rho)(K+1)}{1-\delta}\,, \quad N' \geq |q|+2((1-\delta)N-|m|)-d-2-2\rho(K+1),$$

in which case we obtain

$$r_*^{(K)} \in \dot{S}_{0,0,\lfloor(1-\delta)N-|m|-d-2-(1+\rho)(K+1)\rfloor,\lfloor N'-|q|-2((1-\delta)N-|m|)+d+2+2\rho(K+1)\rfloor}^{q(K)}.$$