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Symbol classes

Sm
ρ,δ,N,N′ . . . for |α| ≤ N, |β| ≤ N ′ it holds

(∀x ∈ Rd)(∀ξ ∈ Rd) |∂α
x ∂

β
ξ σ(x, ξ)| ≤ Cα,β⟨ξ⟩m−ρ|β|+δ|α| ,

where ⟨ξ⟩ = (1 + |ξ|2)
1
2

norm: |σ|(m,ρ,δ)

N,N′ = max
|α|≤N,|β|≤N′

sup
x,ξ∈Rd

|∂α
x ∂

β
ξ
σ(x,ξ)|

⟨ξ⟩m−ρ|β|+δ|α|

Ṡq,m
ρ,δ,N,N′ . . . for |α| ≤ N, |β| ≤ N ′ it holds

(∀x ∈ Rd)(∀ξ ∈ Rd) |∂α
x ∂

β
ξ σ(x, ξ)| ≤ Cα,β⟨x⟩q−|α|⟨ξ⟩m−ρ|β|+δ|α|

norm: |σ|(q,m,ρ,δ)

N,N′ = max
|α|≤N,|β|≤N′

sup
x,ξ∈Rd

|∂α
x ∂

β
ξ
σ(x,ξ)|

⟨x⟩q−|α|⟨ξ⟩m−ρ|β|+δ|α|
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All in one

Sq,m
ρ,δ,N,N′ . . . for |α| ≤ N, |β| ≤ N ′ it holds

(∀x ∈ Rd)(∀ξ ∈ Rd) |∂α
x ∂

β
ξ σ(x, ξ)| ≤ Cα,β⟨x⟩q⟨ξ⟩m−ρ|β|+δ|α|

It contains both Sm
ρ,δ,N,N′ (as a special case) and Ṡq,m

ρ,δ,N,N′ (as a subclass).



Notation

For N,N ′ ∈ N0 we define an equivalent family of semi-norms on S(Rd) with

|φ|N,N′ = sup
|α|≤N,|β|≤N′

sup
x∈Rd

|xα∂βφ(x)|,

and by SN,N′(Rd) we denote the Banach space of all functions φ ∈ CN′
(Rd)

for which |φ|N,N′ < ∞.

Together with standard notation for partial derivatives ∂α
x we also use

Dα
x = (−i)|α|∂α

x and ⟨Dx⟩2k = (1−△x)
k, where △ is the Laplace operator.

By C we always denote a constant, even if it changes during calculation, while
Cp is a constant depending on parameter p.

By ⌊x⌋ we denote the largest integer not greater than x, while ⌊x⌋2 is the
largest even integer not greater than x.
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ΨDO - definition and continuity

For σ ∈ Sm
ρ,δ,N,N′ or σ ∈ Ṡq,m

ρ,δ,N,N′ we denote the corresponding
pseudodifferential operator Tσ by

Tσφ(x) =

∫
Rd

eix·ξσ(x, ξ)φ̂(ξ) d̄ξ, φ ∈ S(Rd),

where d̄ξ = (2π)−ddξ.

Lemma 1. F : SN,N′(Rd) → SN′,N−d−1(R
d) is a linear bounded mapping for

N ≥ d+ 1. More precisely, there is a constant CN,N′ > 0 such that

|φ̂|N′,N−d−1 ≤ CN,N′ |φ|N,N′ for all φ ∈ SN,N′(Rd) .

Theorem 1. Let σ ∈ Sm
ρ,δ,N,N′ . Then Tσ is a bounded mapping from S(Rd)

to SN′,N (Rd), and from SM,M′(Rd) to
Smin{N′,M−d−1},min{N,M′−m−d−1}(R

d), M ≥ d+ 1, M ′ ≥ m+ d+ 1. More
precisely, there is a constant Ck,l > 0 such that

|Tσφ|k,l ≤ Ck,l|σ|(m,ρ,δ)
l,k |φ|d+1+k,m+d+1+l ,

for all k, l ∈ N0 for which semi-norms are well-defined.
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Remark on Ṡ

Theorem 1 holds also for σ ∈ Ṡq,m
ρ,δ,N,N′ , q ≤ 0 as in that case we have

Ṡq,m
ρ,δ,N,N′ ⊆ Sm

ρ,δ,N,N′ . For q > 0 we cannot estimate ⟨x⟩q.

Theorem 1 shows that for σ1 ∈ Sm1

ρ1,δ1,N1,N
′
1
, σ2 ∈ Sm2

ρ2,δ2,N2,N
′
2
we have that

Tσ1Tσ2 : S(Rd) → Smin{N′
1, N

′
2−d−1},min{N1, N2−m1−d−1}(R

d) is well-defined
and bounded operator.

Goals:
1) to prove that this composition is again a pseudodifferential operator with a
symbol in a suitable class and to obtain an exact formula and an asymptotic
expansion for its symbol.

2) to do the same for a formal adjoint of Tσ, where σ ∈ Sm
ρ,δ,N,N′ .
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Ṡq,m
ρ,δ,N,N′ ⊆ Sm

ρ,δ,N,N′ . For q > 0 we cannot estimate ⟨x⟩q.

Theorem 1 shows that for σ1 ∈ Sm1

ρ1,δ1,N1,N
′
1
, σ2 ∈ Sm2

ρ2,δ2,N2,N
′
2
we have that

Tσ1Tσ2 : S(Rd) → Smin{N′
1, N

′
2−d−1},min{N1, N2−m1−d−1}(R

d) is well-defined
and bounded operator.

Goals:
1) to prove that this composition is again a pseudodifferential operator with a
symbol in a suitable class and to obtain an exact formula and an asymptotic
expansion for its symbol.

2) to do the same for a formal adjoint of Tσ, where σ ∈ Sm
ρ,δ,N,N′ .



Remark on Ṡ
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ρ,δ,N,N′ , q ≤ 0 as in that case we have
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Amplitudes

The space of amplitudes Aq,m,δ
N,N′ (R

d ×Rd), q,m ∈ R, δ ∈ [0, 1), N,N ′ ∈ N0,

is the set of functions a : Rd ×Rd → C such that

|∂α
y ∂

β
η a(y, η)| ≤ Cα,β⟨y⟩q⟨η⟩m+δ|α|

uniformly in y, η ∈ Rd for all |α| ≤ N, |β| ≤ N ′, and where all partial
derivatives are understood to be continuous.

Aq,m,δ
N,N′ (R

d ×Rd) is the Banach space with the norm

|a|Aq,m,δ

N,N′
= max

|α|≤N,|β|≤N′
sup

y,η∈Rd

|∂α
y ∂

β
η a(y, η)|

⟨y⟩q⟨η⟩m+δ|α| .
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Oscillatory integrals

Theorem 2. Let a ∈ Aq,m,δ
N,N′ (R

d ×Rd), q,m ∈ R, δ ∈ [0, 1), N,N ′ ∈ 2N0,

N > m+d
1−δ

, N ′ > q + d, and let χ ∈ S(Rd ×Rd) with χ(0, 0) = 1. Then∫∫
e−iyηa(y, η)dy d̄η := lim

ϵ→0

∫∫
χ(ϵy, ϵη)e−iyηa(y, η)dy d̄η

exists

and∫∫
e−iyηa(y, η)dy d̄η =

∫∫
e−iyη⟨y⟩−2l′⟨Dη⟩2l

′(
⟨η⟩−2l⟨Dy⟩2la(y, η)

)
dy d̄η ,

where l, l′ ∈ N0 are chosen so that the integrand is in L1(Rd ×Rd), namely
N ≥ 2l > m+d

1−δ
, N ′ ≥ 2l′ > q + d. Moreover, the definition does not depend

on χ and ∣∣∣ ∫∫ e−iyηa(y, η)dy d̄η
∣∣∣ ≤ Cq,m,δ|a|Aq,m,δ

2l,2l′
.
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Oscillatory = iterated

We can notice that the previous theorem simplifies if q < −d or m < −d, and
that for q,m < −d we actually have an absolutely convergent integral.

For example, if q < −d, we can take χ ∈ S(Rd) with χ(0) = 1 and
equivalently define the oscillatory integral as∫∫

e−iyηa(y, η)dy d̄η := lim
ϵ→0

∫∫
χ(ϵη)e−iyηa(y, η)dy d̄η .

In this case the oscillatory integral is equal to an iterated integral, whenever the
latter exists.

For simplicity, in the sequel we sometimes consider only the case q,m ≥ −d as
the most interesting one.
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Change of variables

For χ(y, η) ∈ S(Rd ×Rd) with χ(0, 0) = 1 a function χ(A(y, η)), where A is
the regular real matrix, has the same properties and so we are allowed to make
a linear change of variables (y, η) = A(y′, η′) in the oscillatory integral as long
as yη = y′η′, in which case we have∫∫

e−iyηa(y, η)dy d̄η =

∫∫
e−iy′η′

a(A(y′, η′))|detA|dy′d̄η′ .

Moreover, this change of variables can be performed without the requirement
yη = y′η′ if we replace yη in the definition of the oscillatory integral with a
general nondegenerate real quadratic form. In that case we are not able to
obtain the representation from Theorem 2.
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The Fubini theorem

Theorem 3. Let a ∈ Aq,m,δ
N,N′ (R

d+k ×Rd+k), q,m ∈ R, δ ∈ [0, 1) and

N,N ′ ∈ N0 with

N ≥ |m|+ k + 2

1− δ
, N ′ ≥ |q|+ k + 2 .

Then

b(y, η) :=

∫∫
e−iy′η′

a(y, y′, η, η′)dy′d̄η′ ∈ Aq,m+δN,0
N−2l,N′−2l′(R

d ×Rd) ,

where integration is with respect to Rk ×Rk, 2l > |m|+ δN + k,
2l′ > |q|+ k, and

∂α
y ∂

β
η b(y, η) =

∫∫
e−iy′η′

∂α
y ∂

β
η a(y, y

′, η, η′)dy′d̄η′ ,

for |α| ≤ N − 2l, |β| ≤ N ′ − 2l′.



The Fubini theorem - cont.

Theorem 3. Moreover, if δ ∈ [0, 1
2
), q,m ≥ −d and N,N ′ ∈ 2N0 with

N >
m+ |m|+max{d, k}+ d+ k + 2

1− 2δ
, N ′ > q+ |q|+max{d, k}+d+k+2 ,

then∫∫∫∫
e−iyη−iy′η′

a(y, y′, η, η′)dydy′d̄ηd̄η′

=

∫∫
e−iyη

(∫∫
e−iy′η′

a(y, y′, η, η′)dy′d̄η′
)
dy d̄η .



Operators with double symbols

TD
σ φ(x) =

∫
Rd

∫
Rd

∫
Rd

∫
Rd

ei(x−x′)·ξ+i(x′−x′′)·ξ′σ(x, ξ, x′, ξ′)φ(x′′)dx′′d̄ξ′dx′d̄ξ,

where φ ∈ S(Rd), the integrals have to be understood as iterated integrals and
the symbol σ belongs to one of the following two classes.

Sq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
. . .

|∂α
x ∂

β
ξ ∂

α′
x′ ∂β′

ξ′ σ(x, ξ, x
′, ξ′)| ≤ C⟨x⟩q1⟨ξ⟩m1−ρ1|β|+δ1|α|⟨x′⟩q2⟨ξ′⟩m2−ρ2|β′|+δ2|α′|

In the case q1 = q2 = 0 we denote this class as Sm1,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
.

Ṡq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
. . .

|∂α
x ∂

β
ξ ∂

α′
x′ ∂β′

ξ′ σ(x, ξ, x
′, ξ′)|

≤ C⟨x⟩q1−|α|⟨ξ⟩m1−ρ1|β|+δ1|α|⟨x′⟩q2−|α′|⟨ξ′⟩m2−ρ2|β′|+δ2|α′|



Operators with double symbols

TD
σ φ(x) =

∫
Rd

∫
Rd

∫
Rd

∫
Rd

ei(x−x′)·ξ+i(x′−x′′)·ξ′σ(x, ξ, x′, ξ′)φ(x′′)dx′′d̄ξ′dx′d̄ξ,

where φ ∈ S(Rd), the integrals have to be understood as iterated integrals and
the symbol σ belongs to one of the following two classes.

Sq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
. . .

|∂α
x ∂

β
ξ ∂

α′
x′ ∂β′

ξ′ σ(x, ξ, x
′, ξ′)| ≤ C⟨x⟩q1⟨ξ⟩m1−ρ1|β|+δ1|α|⟨x′⟩q2⟨ξ′⟩m2−ρ2|β′|+δ2|α′|

In the case q1 = q2 = 0 we denote this class as Sm1,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
.

Ṡq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
. . .

|∂α
x ∂

β
ξ ∂

α′
x′ ∂β′

ξ′ σ(x, ξ, x
′, ξ′)|

≤ C⟨x⟩q1−|α|⟨ξ⟩m1−ρ1|β|+δ1|α|⟨x′⟩q2−|α′|⟨ξ′⟩m2−ρ2|β′|+δ2|α′|



Operators with double symbols

TD
σ φ(x) =

∫
Rd

∫
Rd

∫
Rd

∫
Rd

ei(x−x′)·ξ+i(x′−x′′)·ξ′σ(x, ξ, x′, ξ′)φ(x′′)dx′′d̄ξ′dx′d̄ξ,

where φ ∈ S(Rd), the integrals have to be understood as iterated integrals and
the symbol σ belongs to one of the following two classes.

Sq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
. . .

|∂α
x ∂

β
ξ ∂

α′
x′ ∂β′

ξ′ σ(x, ξ, x
′, ξ′)| ≤ C⟨x⟩q1⟨ξ⟩m1−ρ1|β|+δ1|α|⟨x′⟩q2⟨ξ′⟩m2−ρ2|β′|+δ2|α′|

In the case q1 = q2 = 0 we denote this class as Sm1,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
.

Ṡq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
. . .

|∂α
x ∂

β
ξ ∂

α′
x′ ∂β′

ξ′ σ(x, ξ, x
′, ξ′)|

≤ C⟨x⟩q1−|α|⟨ξ⟩m1−ρ1|β|+δ1|α|⟨x′⟩q2−|α′|⟨ξ′⟩m2−ρ2|β′|+δ2|α′|



The Fubini theorem for double symbols

Theorem 4. Let a ∈ Sq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
with N1, N2, N

′
1, N

′
2 ∈ 2N0. If

N2 >
m2 + d

1− δ2
, N ′

2 > q2 + d ,

then

b(y, η) :=

∫∫
e−iy′η′

a(y, y′, η, η′)dy′d̄η′ ∈ Aq1,m1,δ1
N1,N

′
1

(Rd ×Rd) ,

and

∂α
y ∂

β
η b(y, η) =

∫∫
e−iy′η′

∂α
y ∂

β
η a(y, y

′, η, η′)dy′d̄η′ ,

for |α| ≤ N1, |β| ≤ N ′
1.



The Fubini theorem for double symbols - cont.

Theorem 4. Moreover, if q1, q2,m1,m2 ≥ −d and

N1, N2 >
m̃+ (3− δ)d+ 4(1− δ)

(1− δ)2
, N ′

1, N
′
2 > q̃ + 3d+ 4 ,

where q̃ = max{q1, q2, q1 + q2}, m̃ = max{m1,m2,m1 +m2} and
δ = max{δ1, δ2}, then∫∫∫∫

e−iyη−iy′η′
a(y, y′, η, η′)dydy′d̄ηd̄η′

=

∫∫
e−iyη

(∫∫
e−iy′η′

a(y, y′, η, η′)dy′d̄η′
)
dy d̄η .



Asymptotic expansion I

We want to show that for regular enough symbols we have TD
σ = TσL where

σL(x, ξ) :=

∫∫
e−iyησ(x, ξ + η, x+ y, ξ)dy d̄η . (1)

In the next two theorems we first derive asymptotic expansions for σL.

Theorem 5. Let σ ∈ Sm1,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
, ρ = min{ρ1, ρ2},

δ = max{δ1, δ2}, and let σL be defined by (1). If

N2 ≥ ρ1N
′
1 + |m1|+ (1− ρ1)(d+ 2), N ′

1 ≥ d+ 2 ,

then
σL ∈ S

m1+m2+δ2(|m1|+d+2)

ρ−ρ1δ2, δ+δ1δ2,
⌊

N2−ρ1N′
1−|m1|−(1−ρ1)(d+2)

1+δ1

⌋
, N′

1−d−2
.



Asymptotic expansion I

We want to show that for regular enough symbols we have TD
σ = TσL where

σL(x, ξ) :=

∫∫
e−iyησ(x, ξ + η, x+ y, ξ)dy d̄η . (1)

In the next two theorems we first derive asymptotic expansions for σL.

Theorem 5. Let σ ∈ Sm1,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
, ρ = min{ρ1, ρ2},

δ = max{δ1, δ2}, and let σL be defined by (1). If

N2 ≥ ρ1N
′
1 + |m1|+ (1− ρ1)(d+ 2), N ′

1 ≥ d+ 2 ,

then
σL ∈ S

m1+m2+δ2(|m1|+d+2)

ρ−ρ1δ2, δ+δ1δ2,
⌊

N2−ρ1N′
1−|m1|−(1−ρ1)(d+2)

1+δ1

⌋
, N′

1−d−2
.



Asymptotic expansion I - cont.

Theorem 5. Moreover, if (for some K ∈ N0)

ρ1 >
δ2

1− δ2
, N2 ≥ ρ1N

′
1+ |m1|+(1−ρ1)(d+2)+K+1, N ′

1 ≥ K+d+3 ,

then we have

σL(x, ξ) =
∑

|γ|≤K

1

γ!
∂γ
ξ D

γ
x′σ(x, ξ, x, ξ) + r

(K)
L (x, ξ) ,

where

r
(K)
L ∈ S

m1+m2+δ2(|m1|+d+2)−(ρ1−δ2−ρ1δ2)(K+1)

ρ−ρ1δ2, δ+δ1δ2,
⌊

N2−ρ1N′
1−|m1|−(1−ρ1)(d+2)−K−1

1+δ1

⌋
, N′

1−K−d−3
.



Asymptotic expansion II

Theorem 6. Let σ ∈ Ṡq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
, ρ = min{ρ1, ρ2},

δ = max{δ1, δ2}, and let σL be defined by (1). If

N2 ≥ |m1|+ d+ 2, N ′
1 ≥ |q2|+

2(N2 − |m1|)− (1− δ1)(d+ 2)

1 + δ1
,

then

σL ∈ Ṡ
q1+q2,m1+m2+δ2(|m1|+d+2)

0, δ+δ1δ2,
⌊

N2−|m1|−d−2
1+δ1

⌋
,
⌊
N′

1−|q2|−
2(N2−|m1|)−(1−δ1)(d+2)

1+δ1

⌋ .

Moreover, if (for some K ∈ N0) ρ1 ≥ δ2
1−δ2

and

N2≥|m1|+d+2+(1+ρ1)(K+1), N′
1≥|q2|+

2(N2−|m1|)−(1−δ1)(d+2)−2(ρ1−δ1)(K+1)
1+δ1

,

then we have

σL(x, ξ) =
∑

|γ|≤K

1

γ!
∂γ
ξ D

γ
x′σ(x, ξ, x, ξ) + r

(K)
L (x, ξ) ,

where

r
(K)
L

∈Ṡ
q1+q2−K−1,m1+m2+δ2(|m1|+d+2)−(ρ1−δ2−ρ1δ2)(K+1)

0, δ+δ1δ2,

⌊
N2−|m1|−d−2−(1+ρ1)(K+1)

1+δ1

⌋
,

⌊
N′

1−|q2|− 2(N2−|m1|)−(1−δ1)(d+2)−2(ρ1−δ1)(K+1)
1+δ1

⌋ .



Asymptotic expansion II

Theorem 6. Let σ ∈ Ṡq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
, ρ = min{ρ1, ρ2},

δ = max{δ1, δ2}, and let σL be defined by (1). If

N2 ≥ |m1|+ d+ 2, N ′
1 ≥ |q2|+

2(N2 − |m1|)− (1− δ1)(d+ 2)

1 + δ1
,

then

σL ∈ Ṡ
q1+q2,m1+m2+δ2(|m1|+d+2)

0, δ+δ1δ2,
⌊

N2−|m1|−d−2
1+δ1

⌋
,
⌊
N′

1−|q2|−
2(N2−|m1|)−(1−δ1)(d+2)

1+δ1

⌋ .
Moreover, if (for some K ∈ N0) ρ1 ≥ δ2

1−δ2
and

N2≥|m1|+d+2+(1+ρ1)(K+1), N′
1≥|q2|+

2(N2−|m1|)−(1−δ1)(d+2)−2(ρ1−δ1)(K+1)
1+δ1

,

then we have

σL(x, ξ) =
∑

|γ|≤K

1

γ!
∂γ
ξ D

γ
x′σ(x, ξ, x, ξ) + r

(K)
L (x, ξ) ,

where

r
(K)
L

∈Ṡ
q1+q2−K−1,m1+m2+δ2(|m1|+d+2)−(ρ1−δ2−ρ1δ2)(K+1)

0, δ+δ1δ2,

⌊
N2−|m1|−d−2−(1+ρ1)(K+1)

1+δ1

⌋
,

⌊
N′

1−|q2|− 2(N2−|m1|)−(1−δ1)(d+2)−2(ρ1−δ1)(K+1)
1+δ1

⌋ .



TD
σ = TσL

Theorem 7. Let σ(x, ξ, x′, ξ′) = σ1(x, ξ)σ2(x
′, ξ′) ∈ Sq1,m1,q2,m2

ρ1,δ1,ρ2,δ2,N1,N
′
1,N2,N

′
2
.

If N ′
1, N2, N

′
2,M

′ ∈ 2N0, q1 ≤ 0, q2 ∈ [−d, 0], m1,m2 ≥ −d and

N2>
m∗+3d+4

1−δ2
, N′

2>3d+4, N′
1>N′

2+q2+3d+4, M>2d+1, M′>m̃+(1+δ2)N2+3d+4 ,

then
TD
σ φ(x) = TσLφ(x) ,

where m∗ = max{|m1|, |m1|+m1 +m2}, m̃ = max{m1,m2,m1 +m2} and
φ ∈ SM,M′(Rd).



The composition theorem I

Theorem 8. Let σ1 ∈ Sm1

ρ1,δ1,N1,N
′
1
, σ2 ∈ Sm2

ρ2,δ2,N2,N
′
2
, m1,m2 ≥ −d,

m∗ = max{|m1|, |m1|+m1 +m2}, m̃ = max{m1,m2,m1 +m2},
ρ = min{ρ1, ρ2}, δ = max{δ1, δ2} and φ ∈ SM,M′(Rd). If
N ′

1, N2, N
′
2,M

′ ∈ 2N0 and

N2>
m∗+3d+4

1−δ2
, N′

2>3d+4, N′
1>N′

2+3d+4, M>2d+1, M′>m̃+(1+δ2)N2+3d+4 ,

then
(Tσ1 ◦ Tσ2)φ(x) = Tσ1#σ2φ(x) ,

where

σ1#σ2(x, ξ) =

∫∫
e−iyησ1(x, ξ + η)σ2(x+ y, ξ)dy d̄η .

If additionally N2 ≥ ρ1N
′
1 + |m1|+ (1− ρ1)(d+ 2), then

σ1#σ2 ∈ S
m1+m2+δ2(|m1|+d+2)

ρ−ρ1δ2, δ+δ1δ2,
⌊

N2−ρ1N′
1−|m1|−(1−ρ1)(d+2)

1+δ1

⌋
, N′

1−d−2
.



The composition theorem I

Theorem 8. Let σ1 ∈ Sm1

ρ1,δ1,N1,N
′
1
, σ2 ∈ Sm2

ρ2,δ2,N2,N
′
2
, m1,m2 ≥ −d,

m∗ = max{|m1|, |m1|+m1 +m2}, m̃ = max{m1,m2,m1 +m2},
ρ = min{ρ1, ρ2}, δ = max{δ1, δ2} and φ ∈ SM,M′(Rd). If
N ′

1, N2, N
′
2,M

′ ∈ 2N0 and

N2>
m∗+3d+4

1−δ2
, N′

2>3d+4, N′
1>N′

2+3d+4, M>2d+1, M′>m̃+(1+δ2)N2+3d+4 ,

then
(Tσ1 ◦ Tσ2)φ(x) = Tσ1#σ2φ(x) ,

where

σ1#σ2(x, ξ) =

∫∫
e−iyησ1(x, ξ + η)σ2(x+ y, ξ)dy d̄η .

If additionally N2 ≥ ρ1N
′
1 + |m1|+ (1− ρ1)(d+ 2), then

σ1#σ2 ∈ S
m1+m2+δ2(|m1|+d+2)

ρ−ρ1δ2, δ+δ1δ2,
⌊

N2−ρ1N′
1−|m1|−(1−ρ1)(d+2)

1+δ1

⌋
, N′

1−d−2
.



The composition theorem I - cont.

Theorem 8. Moreover, if (for some K ∈ N0)

ρ1 >
δ2

1− δ2
, N2 ≥ ρ1N

′
1+ |m1|+(1−ρ1)(d+2)+K+1, N ′

1 ≥ K+d+3 ,

then we have the following asymptotic expansion:

σ1#σ2(x, ξ) =
∑

|γ|≤K

1

γ!
∂γ
ξ σ1(x, ξ)D

γ
xσ2(x, ξ) + r(K)(x, ξ) ,

where

r(K) ∈ S
m1+m2+δ2(|m1|+d+2)−(ρ1−δ2−ρ1δ2)(K+1)

ρ−ρ1δ2, δ+δ1δ2,
⌊

N2−ρ1N′
1−|m1|−(1−ρ1)(d+2)−K−1

1+δ1

⌋
, N′

1−K−d−3
.



The composition theorem II

Theorem 9. Let σ1 ∈ Ṡq1,m1

ρ1,δ1,N1,N
′
1
, σ2 ∈ Ṡq2,m2

ρ2,δ2,N2,N
′
2
, q1 ≤ 0, q2 ∈ [−d, 0],

m1,m2 ≥ −d, m∗ = max{|m1|, |m1|+m1 +m2},
m̃ = max{m1,m2,m1 +m2}, ρ = min{ρ1, ρ2}, δ = max{δ1, δ2} and
φ ∈ SM,M′(Rd). If N ′

1, N2, N
′
2,M

′ ∈ 2N0 and

N2>
m∗+3d+4

1−δ2
, N′

2>3d+4, N′
1>N′

2+q2+3d+4, M>2d+1, M′>m̃+(1+δ2)N2+3d+4 ,

then
(Tσ1 ◦ Tσ2)φ(x) = Tσ1#σ2φ(x) ,

where

σ1#σ2(x, ξ) =

∫∫
e−iyησ1(x, ξ + η)σ2(x+ y, ξ)dy d̄η .

If additionally N ′
1 ≥ |q2|+ 2(N2−|m1|)−(1−δ1)(d+2)

1+δ1
, then

σ1#σ2 ∈ Ṡ
q1+q2,m1+m2+δ2(|m1|+d+2)

0, δ+δ1δ2,
⌊

N2−|m1|−d−2
1+δ1

⌋
,
⌊
N′

1−|q2|−
2(N2−|m1|)−(1−δ1)(d+2)

1+δ1

⌋ .



The composition theorem II

Theorem 9. Let σ1 ∈ Ṡq1,m1

ρ1,δ1,N1,N
′
1
, σ2 ∈ Ṡq2,m2

ρ2,δ2,N2,N
′
2
, q1 ≤ 0, q2 ∈ [−d, 0],

m1,m2 ≥ −d, m∗ = max{|m1|, |m1|+m1 +m2},
m̃ = max{m1,m2,m1 +m2}, ρ = min{ρ1, ρ2}, δ = max{δ1, δ2} and
φ ∈ SM,M′(Rd). If N ′

1, N2, N
′
2,M

′ ∈ 2N0 and

N2>
m∗+3d+4

1−δ2
, N′

2>3d+4, N′
1>N′

2+q2+3d+4, M>2d+1, M′>m̃+(1+δ2)N2+3d+4 ,

then
(Tσ1 ◦ Tσ2)φ(x) = Tσ1#σ2φ(x) ,

where

σ1#σ2(x, ξ) =

∫∫
e−iyησ1(x, ξ + η)σ2(x+ y, ξ)dy d̄η .

If additionally N ′
1 ≥ |q2|+ 2(N2−|m1|)−(1−δ1)(d+2)

1+δ1
, then

σ1#σ2 ∈ Ṡ
q1+q2,m1+m2+δ2(|m1|+d+2)

0, δ+δ1δ2,
⌊

N2−|m1|−d−2
1+δ1

⌋
,
⌊
N′

1−|q2|−
2(N2−|m1|)−(1−δ1)(d+2)

1+δ1

⌋ .



The composition theorem II - cont.

Theorem 9. Moreover, if (for some K ∈ N0) ρ1 ≥ δ2
1−δ2

and

N2≥|m1|+d+2+(1+ρ1)(K+1), N′
1≥|q2|+

2(N2−|m1|)−(1−δ1)(d+2)−2(ρ1−δ1)(K+1)
1+δ1

,

then we have the following asymptotic expansion:

σ1#σ2(x, ξ) =
∑

|γ|≤K

1

γ!
∂γ
ξ σ1(x, ξ)D

γ
xσ2(x, ξ) + r(K)(x, ξ) ,

where

r(K)∈Ṡ
q1+q2−K−1,m1+m2+δ2(|m1|+d+2)−(ρ1−δ2−ρ1δ2)(K+1)

0, δ+δ1δ2,

⌊
N2−|m1|−d−2−(1+ρ1)(K+1)

1+δ1

⌋
,

⌊
N′

1−|q2|− 2(N2−|m1|)−(1−δ1)(d+2)−2(ρ1−δ1)(K+1)
1+δ1

⌋ .



The adjoint

Now we define a formal adjoint of the operator with symbol σ ∈ Sq,m
ρ,δ,N,N′ ,

q ≤ 0. From Theorem 1 it follows that Tσ maps S(Rd) to SN′,N (Rd). Also,
SN′,N (Rd) ⊆ L2(Rd) for N ′ > d

2
. This motivates the following definition.

Definition
Let σ ∈ Sq,m

ρ,δ,N,N′ , σ
∗ ∈ Sq,m′

ρ′,δ′,M,M′ , q ≤ 0, M ′, N ′ > d
2
. Then Tσ∗ is called a

formal adjoint of Tσ if

(∀φ1, φ2 ∈ S(Rd)) ⟨Tσφ1|φ2⟩ = ⟨φ1|Tσ∗φ2⟩ , (2)

where ⟨·|·⟩ is the standard inner product on L2(Rd).
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The adjoint theorem

Theorem 10. Let σ ∈ Sq,m
ρ,δ,N,N′ , q ∈ [−d, 0], m ≥ −d,

m∗ = max{|m|, |m|+m}. If N,N ′ ∈ 2N0, δ < 3−
√

5
2

and

N >
[m∗ + (3− δ)d+ 4(1− δ)](1− δ)2

1− 3δ + δ2
, N ′ > 2q + 6d+ 10 ,

then (2) is satisfied for

σ∗(x, ξ) =

∫∫
e−iyησ(x+ y, ξ + η)dy d̄η .

If additionally N ≥ ρN′+|m|+(1−ρ)(d+2)
1−δ

, then

σ∗ ∈ Sm+δN
ρ, 0, ⌊(1−δ)N−ρN′−|m|−(1−ρ)(d+2)⌋, N′−d−2 ,

while if additionally σ ∈ Ṡq,m
ρ,δ,N,N′ and N ′ ≥ |q|+ 2((1− δ)N − |m|)− d− 2,

then
σ∗ ∈ Ṡq,m+δN

0, 0, ⌊(1−δ)N−|m|−d−2⌋, ⌊N′−|q|−2((1−δ)N−|m|)+d+2⌋ .
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0, 0, ⌊(1−δ)N−|m|−d−2⌋, ⌊N′−|q|−2((1−δ)N−|m|)+d+2⌋ .



The adjoint theorem

Theorem 10. Let σ ∈ Sq,m
ρ,δ,N,N′ , q ∈ [−d, 0], m ≥ −d,

m∗ = max{|m|, |m|+m}. If N,N ′ ∈ 2N0, δ < 3−
√

5
2

and

N >
[m∗ + (3− δ)d+ 4(1− δ)](1− δ)2

1− 3δ + δ2
, N ′ > 2q + 6d+ 10 ,
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1−δ
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then
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The adjoint theorem - cont.

Theorem 10. Moreover, if (for some K ∈ N0)

ρ

1 + ρ
>

δ

1− δ
, N ≥ ρN ′ + |m|+ (1− ρ)(d+ 2) +K + 1

1− δ
, N ′ ≥ K+d+3 ,

then we have the following asymptotic expansion:

σ∗(x, ξ) =
∑

|γ|≤K

1

γ!
∂γ
ξ D

γ
xσ(x, ξ) + r(K)

∗ (x, ξ) , (3)

where

r(K)
∗ ∈ S

m+δN−ρ(K+1)

ρ, 0, ⌊(1−δ)N−ρN′−|m|−(1−ρ)(d+2)−K−1⌋, N′−K−d−3 .

In the case σ ∈ Ṡq,m
ρ,δ,N,N′ the asymptotic expansion (3) is valid also for

ρ
1+ρ

≥ δ
1−δ

, N≥ |m|+d+2+(1+ρ)(K+1)
1−δ

, N′≥|q|+2((1−δ)N−|m|)−d−2−2ρ(K+1),

in which case we obtain

r(K)
∗ ∈ Ṡ

q−K−1,m+δN−ρ(K+1)

0, 0, ⌊(1−δ)N−|m|−d−2−(1+ρ)(K+1)⌋, ⌊N′−|q|−2((1−δ)N−|m|)+d+2+2ρ(K+1)⌋ .
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1−δ

, N′≥|q|+2((1−δ)N−|m|)−d−2−2ρ(K+1),

in which case we obtain

r(K)
∗ ∈ Ṡ

q−K−1,m+δN−ρ(K+1)
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