Basic calculus of pseudodifferential operators
with nonsmooth symbols

lvan lvec

Faculty of Metallurgy
University of Zagreb

13th International ISAAC Congress
Ghent, August 2-6, 2021.

Joint work with Ivana Vojnovié¢

.
wd Hrzz
.’ Croatian Science
MiTPDE Foundation



Symbol classes

Pseudodifferential operators

Oscillatory integrals

Double symbols

The composition and adjoints



Symbol classes

S5 vt -+ for la] < N, |B] < N it holds
(Ve € RY) (¥ € RY) [07070(, )| < Caafg)™ 7001,

where (€) = (1 + [¢]?)2

(m,p,8) _

1020 o (2,6)|
norm: |o|\ x

naax SUP = TATFoTaT
[al<N,IBISN' 4 cera (&)



Symbol classes

S5 vt -+ for la] < N, |B] < N it holds
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where (£) = (1 + |§|2)§
norm: |0_|(m,p,5) ax sup M
: N,N’ la|<N,|BI<N’ feRd (gym—plBl+slal

saom ... for |a| < N,|B| < N' it holds

p,6,N,N’
(v € RY)(VE € RY) 107000, €)] < Caysa)?™ () 7171010

norm: |o|77? = max sup 1050g 0 (,8)|
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All in one

SZ*;”NN, ... for |a] < N, |B| < N’ it holds

(Vz € RY)(VE € RY) |05 0(x,8)] < Ca pla)?(g)™r P10l

; ; S5g,m
It contains both S v v (as a special case) and ST\ \, (as a subclass).
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For N, N’ € Ny we define an equivalent family of semi-norms on S(R%) with

I v, v = sup sup |$a8690(37)|7
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and by Sy n/(R?) we denote the Banach space of all functions ¢ € cN' (RY)
for which ||y 7 < o0.
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Notation

For N, N’ € Ny we define an equivalent family of semi-norms on S(R%) with

I v, v = sup sup |$a8680(99)|7
|| <N,|BISN' zeRd

and by Sy n/(R?) we denote the Banach space of all functions ¢ € CN/(Rd)
for which ||y 7 < o0.

Together with standard notation for partial derivatives 95 we also use
D2 = (—4)!*1g% and (D,)** = (1 — A,)*, where A is the Laplace operator.

By C' we always denote a constant, even if it changes during calculation, while
C,, is a constant depending on parameter p.

By |x] we denote the largest integer not greater than z, while |z |2 is the
largest even integer not greater than x.



WDO - definition and continuity

For o € S ynv O 0 € Sg’?‘N N We denote the corresponding

pseudodifferential operator T, by
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where d¢ = (2m)~%dE.
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WDO - definition and continuity

For o € S ynv O 0 € Sp s.v.n We denote the corresponding
pseudodlfferentlal operator T, by

Too(w) = [ " Sale.p(6) dt, o € SR,

where d¢ = (2m)~%dE.

Lemma 1. F: SNﬁN/(Rd) — SN/,N_d_l(Rd) is a linear bounded mapping for
N > d+ 1. More precisely, there is a constant Cy n/ > 0 such that

|¢’|N’,N—d—1 < CN,N/‘(P|N,N/ for all ¢ € SN,N’(Rd)-

Theorem 1. Let o € S5 x n+- Then Ty, is a bounded mapping from S(RY)
to SN/,N(R‘Z), and from Sy v (R%) to

Sunin{ N/, M—d—1},min{~, M’ —m—d—1}(R?), M >d+1, M' > m+d+ 1. More
precisely, there is a constant Cy,; > 0 such that

ITo @)k < Cr l|0|(m’p’ Nplds 14 kmerdritt s

for all k,l € No for which semi-norms are well-defined.
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Theorem 1 holds also for o € SZ q < 0 as in that case we have
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1) to prove that this composition is again a pseudodifferential operator with a
symbol in a suitable class and to obtain an exact formula and an asymptotic
expansion for its symbol.



Remark on S

,m

Theorem 1 holds also for o € SZ s @ <0 asin that case we have
gem - C 8™ ,. For ¢ > 0 we cannot estimate (x)?.
p0,N,N p:6,N,N q
mi ma2
Theorem 1 shows that for o1 € SﬂlaéllevN{' oy € sz,Ez,Nz,
d dy - .
T0'1T0'2 : S(R ) — Smin{N’,ledfl},min{Nl,szmlfdfl}(R ) is well-defined
1 2
and bounded operator.

Ny we have that

Goals:

1) to prove that this composition is again a pseudodifferential operator with a
symbol in a suitable class and to obtain an exact formula and an asymptotic
expansion for its symbol.

2) to do the same for a formal adjoint of T, where o € S7"s v nv-



Amplitudes

The space of amplitudes A%%?(Rd xR%Y), ¢;m €R, §€[0,1), N, N’ € Ny,
is the set of functions a : R% x R? — C such that

1050 a(y, m)| < Ca,p{y)?(n)™ 1

uniformly in y,n € R for all |a| < N, |8| < N’, and where all partial
derivatives are understood to be continuous.



Amplitudes

The space of amplitudes A%%?(Rd xR%Y), ¢;m €R, §€[0,1), N, N’ € Ny,
is the set of functions a : R% x R? — C such that

e m-+§|a
0505 ay,n)| < Cas(y)?(n)™ 1!
uniformly in y,n € R for all |a| < N, |8| < N’, and where all partial
derivatives are understood to be continuous.

ALY (RY x RY) is the Banach space with the norm

|05 05 a(y,n)|

al qm,s = max S .
| |A?v,77w6 la|<NJBISN' o ega (y)4(n)m+olel



Oscillatory integrals

Theorem 2. Leta € A?\}T';\,’,&(Rd xR, ¢,;m R, §€[0,1), N,N' € 2Ny,
N > 2t N’ > g+d, and let x € S(R* x R?) with x(0,0) = 1. Then

// e~ a(y, n)dy dn := lim // x(ey, en)e” " a(y, n)dy dn

exists



Oscillatory integrals

Theorem 2. Leta € A?\}T';\,’,S(Rd xR, ¢,;m R, §€[0,1), N,N' € 2Ny,
N > 2t N’ > g+d, and let x € S(R* x R?) with x(0,0) = 1. Then

// e~ a(y, n)dy dn := lim // x(ey, en)e” " a(y, n)dy dn

exists and
// e "a(y,n)dy dn = // ey 2 (D) () 7*(Dy) P aly, m))dy dn,

where 1,1’ € Ng are chosen so that the integrand is in L' (R® x R?), namely
N >20> 24t N'>2l' > g+ d. Moreover, the definition does not depend
on x and

’// 6_i1’"a(y,n)dydn‘ < Cqmislal ga.ms -

21,21
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that for ¢, m < —d we actually have an absolutely convergent integral.
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Oscillatory = iterated

We can notice that the previous theorem simplifies if ¢ < —d or m < —d, and
that for ¢, m < —d we actually have an absolutely convergent integral.

For example, if ¢ < —d, we can take x € S(R?) with x(0) = 1 and
equivalently define the oscillatory integral as

//e‘iy”a(y,n)dycm = l%//x(en)e_i”a(y,n)dydﬂ-

In this case the oscillatory integral is equal to an iterated integral, whenever the
latter exists.

For simplicity, in the sequel we sometimes consider only the case ¢, m > —d as
the most interesting one.



Change of variables

For x(y,1) € S(R? x R%) with x(0,0) = 1 a function x(A(y, 7)), where A is
the regular real matrix, has the same properties and so we are allowed to make
a linear change of variables (y,71) = A(y’,7) in the oscillatory integral as long
as yn = y'n’, in which case we have

//e_iy"a(yw)dyd’n://e_iyl”/a(A(y/,n'))ldetAldy'd’n'-



Change of variables

For x(y,1) € S(R? x R%) with x(0,0) = 1 a function x(A(y, 7)), where A is
the regular real matrix, has the same properties and so we are allowed to make
a linear change of variables (y,71) = A(y’,7) in the oscillatory integral as long
as yn = y'n’, in which case we have

//e_iy"a(ym)dyd’n://e_iyl”/a(A(y/,n'))ldetAldy'd’n'-

Moreover, this change of variables can be performed without the requirement
yn = y'n’ if we replace yn in the definition of the oscillatory integral with a
general nondegenerate real quadratic form. In that case we are not able to
obtain the representation from Theorem 2.



The Fubini theorem

Theorem 3. Let a € AL (RUF x RM™F), ¢,m € R, 6 € [0,1) and
N, N' € Ny with

2 /
N > “”'1%"";, N >ql+k+2.
Then
b(y,m) // aly,y',n,n')dy'dn’ € ALY 00 (R x RY),

where integration is with respect to R* x R, 21 > |m| + 6N + k,
2" > |q| + k, and

0y 0nb(y,m) = // eV ogaaly,y' n,n)dy'dy’

for |a| < N —2l, || < N' =2l



The Fubini theorem - cont.

Theorem 3. Moreover, if § € [0,3), ¢,m > —d and N, N’ € 2Ny with

m + |m| + max{d,k} +d+ k + 2

N> -2

, N' > q+|q|+max{d,k}+d+k+2,

then

//// e W= gy o, ) dydy' dndn
7’Ly7] / /
// // a(y,y',n,m )dydn)dydn-



Operators with double symbols
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where ¢ € S(R?), the integrals have to be understood as iterated integrals and
the symbol o belongs to one of the following two classes.



Operators with double symbols

o) = [ [ [ ]S oo g (e o,
RrRd JRAd JRI JRA

where ¢ € S(R?), the integrals have to be understood as iterated integrals and
the symbol o belongs to one of the following two classes.
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a1 = g2 p1,61,02,62,N1,N{,N2,N}



Operators with double symbols

o= [ [ [ ] e o g ol @ i ',

where ¢ € S(R?), the integrals have to be understood as iterated integrals and
the symbol o belongs to one of the following two classes.

q1,m1,92,Mm2
p1,81,p2,02,N1,N{,N2,NJ

' 58’ Y - +6 ’ nma—pa|B|+62]a’
\8?85'3 , (9'3, o(x, &2’ &) < Clz)™ (&)™ p1lB| 1\a|<x Y22 (¢/ym2 p2|B | +d2]c|
my,m2
In the case g1 = g2 = 0 we denote this class as Spl,él,pz,cSz,Nl,N{,Nz,Né'

SCII ,M1,q2,m2
p1,61,02,62,N1,N{,Na,N/

|aaaﬁa°‘ ‘o(z,6,2",¢)|
< C<x>q1f\a|<§>m1*ﬂ1\5\+51\a|<x/>42*\a'\<§/>M2792I6'\+52\a'|



The Fubini theorem for double symbols

Theorem 4. Leta € Sgijg;‘;%;rﬁvl,N{,Nz,Né with N1, N2, Ni, N} € 2Ny. If
d
Nz > ma + s N£>QQ+d,
1— 062
then
—iy'n’ ,my,8 d
b(y,m) = //e U aly,y' n,n)dy'dn' € AR (R < RY),
and

05 0y b(y,m) = //67”’ oyl aly,y' n,n)dy'dy’

for |a| < Ny, |B] < Ny.



The Fubini theorem for double symbols - cont.

Theorem 4. Moreover, if q1,q2, m1, ma > —d and

m+ (3—90)d+4(1—9)
(1-4)?

Ni, Nz > , N{,N;>qG+3d+4,

where ¢ = max{q1, g2, q1 + g2}, M = max{mi, ma, m1 + ma} and
0 = max{d1, 02}, then

/ / / / ey, ) dydy' dndny’
// ‘”‘" // a(y,y',n.n )dy'd’n')dydﬂ-



Asymptotic expansion |

We want to show that for regular enough symbols we have TP = T5, where

or(2,€) = / / (2, & 3+ y,E)dy dn. (1)

In the next two theorems we first derive asymptotic expansions for oy,.



Asymptotic expansion |

We want to show that for regular enough symbols we have TP = T5, where

or(2,€) = / / (2, & 3+ y,E)dy dn. (1)

In the next two theorems we first derive asymptotic expansions for oy,.

Theorem 5. Let o € S"Il(;?fz 52, N1 N Na N P min{p1, p2},
d = max{d1,02}, and let o, be defined by (1) If

Nz > p1Ny + |[ma| + (1 = p1)(d + 2), Ni>d+2,

then
my+ma+dz(|my|+d+2)
Ng—p1 N{—Imy|=(1—p1)(d+2)

or €8 .
p—p182, 646152, | I o Nj—a—2




Asymptotic expansion | - cont.

Theorem 5. Moreover, if (for some K € Ny)

p1 > No > pi Ny +|ma|+(1—p1)(d+2)+ K+1, Ny>K+d+3,

02
1—23627
then we have

1 K
or(@,§) = Y SO DLo(w, 2,8 +ri (),
[v|<K
where
T.(LK) c Sm1+m2+52(\m1\+d+2)*(P1*52*0152)(K+1)

No—py N| — —(1— d+2)—K—1
p—p152,5+5152,L 2—=p1Nj—Imi|=(1=p1)(d+2)

’
. | N —K—d-3




Asymptotic expansion |l

Theorem 6. Let o € 7 ™192m2 = min
€ p1,61,p2,62,N1,N{,N2,NJ,’ p {pl’pQ}'

0 = max{d1, 02}, and let o1, be defined by (1). If

2(N2 — [ma|) — (1= 61)(d +2)
1+

No > |ma| +d+2, Ni > |g2| +

’

then

491 +4q2, m1+mo+62(|m1|+d+2)

or €85 No— —d—2 2(No— —(1-67)(d+2) | *
0,8+68182, L%L LN{_lqzl_ (Ng |m1|1)+6(1 1) (d+ )J




Asymptotic expansion |l

Theorem 6. Let o € 7 ™192m2 = min
€ p1,61,p2,62,N1,N{,N2,NJ,’ p {pl’pQ}’

0 = max{d1, 02}, and let o1, be defined by (1). If

2(N2 — [ma|) — (1= 61)(d +2)
1+ ’

Nz > |mi| +d+2, Ni > |g2| +

then

491 +4q2, m1+mo+62(|m1|+d+2)

or €85 No— —d—2 2(No— —(1-67)(d+2) | *
0,8+68182, L%L LN{_lqzl_ (Ng |m1|1)+6(1 1) (d+ )J

Moreover, if (for some K € Ng) p1 > 1?52 and

No>|my|+d+2+(1+p1) (K+1),  Ni>|qz|+2F2=lmD=(0=00)(ed2) =200 =01 (ED |
then we have
K
L@ =Y ;a”D (@, &2,8) + 1 (@,)
V<K
where

(K) egutaz—K—1,mitma+da(lmy|+d+2)—(p1—63—p182)(K+1)
0,6+5162, LN2*|m1|*d1ig(1+01)(K+1)JY LN/_‘q - Q(NQ*\WH\)*(1*51)(d+2)*2(/)1*51)(K+1)J




o Y q1,Mm1,92,M2
Theorem 7. Let o(z,&,2",&") = o1(z,&)o2(2’, &) € Spl,gl,p2,52,N1,N{,N2,N§'

If N{, N2, N3, M’ € 2No, q1 <0, g2 € [—d, 0], m1,ma > —d and

.
N2>%€’;‘;+4, N5>3d+4, N{>Nhtqa+3d+4, M>2d+1, M’'>m4(1+62)Na+3d+4,

then
ToD(p(x) =To, o(z),
where m* = max{|mi|, |mi| + m1 + ma}, m = max{mi, ma, m1 + m2} and

® S S]\,[,M/(Rd).



The composition theorem |

Theorem 8. Let o1 € ST, Ny 02 € S N, vy M mez > —d,
m* = max{|m1l,|mi| +mi + mg} m = max{ml,mz,rm + ma},
p= min{pl, pz}, 0= max{51,5g} and [N Sjyij/(Rd). If

NI, Na, N}, M’ € 2No and

N2>%3“4, N4>3d+4, Ni>N5+3d+4, M>2d+1, M’ >m+(1482)No+3d+4,

then
(Toy 0 Toy)p(x) = T01#02$"(1‘) )

where

o1 (2, €) = / / Vo1 (2,€ + n)oa(e + g, €)dy dn.



The composition theorem |

Theorem 8. Let o1 € ST, Ny 02 € S N, Ny T, me > —d,
m* = max{|m1l,|mi| +mi + mg} m= max{ml,mz,rm +ma},
p =min{p1, p2}, § = max{d,d2} and ¢ € Sprar (RY). If

Ni, N2, N3, M" € 2Ng and
N2>%3“4, N5>3d+4, N{>Ns4+3d+4, M>2d+1, M’'>m+(1462)Na+3d+4,

then
(Td1 © TUQ)‘P(x) = Tﬁl#az%’(l‘) )
where

o1#oa(x, &) = // (@,§ +n)o2(z +y,&)dy dn.

If additionally N2 > p1 N1 + |ma|+ (1 — p1)(d + 2), then

8 d+2
o14tos € gmitmat 2(|m1l+d+2)

N. N/ — 1— d+2
P—P152,6+5162,L z27e lTi(‘h( £1)( )J

’
N{—d—2



The composition theorem | - cont.

Theorem 8. Moreover, if (for some K € Ny)
1)

p1 > ﬁ, No > pi Ny +|ma|+(1—p1)(d+2)+K+1, Ni>K-+d+3,
— 02

then we have the following asymptotic expansion:

1
oi#oa(w,6) = Y 0o (w,§)Dioa(x, &) +r(x,8),
<k
where
7ﬂ(K) e Sm1+m2+52(\m1\+d+2)—(91—52—P152)(K+1)

Ng—p1 Nf —|mq|—(1—p1)(d+2)—K—1 :
p—p18a, 64615y, | T2 Lo | N{-K—d-3




The composition theorem Il

Theorem 9. Let o1 € SZi:ZENl,N{' o2 € Sg;:g;"”NQ,Né, @ <0, g2 €[—d,0],
mi,me > —d, m* = max{|ma|, |m1| + m1 + ma},

m = max{mi, ma2, m1 +ma}, p = min{p1, p2}, 6 = max{d1,d2} and

¢ € S (RY). If N{, No, N3, M’ € 2Ng and

.
Np>mot8dbd N >3d4d,  N{>Njtae+3d+4, M>2d+1, M’ >it(1+52)Na+3d+4,

then
(T 0 Toy)p(%) = Toy o p(2)

where

o1 (z,€) = / / Vo1 (2,€ + m)oa(z + 9, €)dy dn.



The composition theorem Il

Theorem 9. Let o € SZi:ZENl,N{' o2 € Sg;:ngQ,Né, @ <0, g2 €[—d,0],
mi,me > —d, m* = max{|ma|, |m1| + m1 + ma},

m = max{mi, ma2, m1 +ma}, p = min{p1, p2}, 6 = max{d1,d2} and

¢ € S (RY). If N{, No, N3, M’ € 2Ng and

.
Np>motSdEd - Nj>3d4d,  N{>Njtaat3d+d, M>2d+1,  M'>mt(1462)Nat3d+4,

then
(T 0 Toy)p(%) = Toy o p(2)

where

o1 (z,€) = / / Vo1 (2,€ + m)oa(z + 9, €)dy dn.

If additionally Ni > |g| + 2R2=lmiD=U=00(EE2) 4hep

5 d
o140s € StI1+q27m1+m2+52(\m1\+ +2)

No—|mq|—d—2 2(Ng — —(1— d+2 *
0, 64618, | N2l =d=2 || Ny gy 2Wa=ma Do (01)(d42) |




The composition theorem Il - cont.

d2
1—65

Theorem 9. Moreover, if (for some K € Ng) p1 > and

No>|my|+d+2+(1+p1)(K+1), Ni>|gal+

2(Ng—|m3 ) —(1—=671)(d+2)—2(p1 =51 ) (K +1)
1451 )

then we have the following asymptotic expansion:
1
oi#oa(w,§) = Y 0 o (w,§)Dioa(x, ) +r(x,8),
v
V<K
where

(K ggutaz—K—1, myt+mo+8a(Imy|+d+2)—(p1 —62—p182)(K+1)
No—|my|=d—2—(14p1)(K+1) 2(Ng—|mj D—=(1=581)(d+2)—=2(p3 —51) (K+1)
o,5+5152,L 5, J,LN{f\qglf 115, J




The adjoint

Now we define a formal adjoint of the operator with symbol o € SZ":;?N’N,,

q < 0. From Theorem 1 it follows that T, maps S(R%) to Sy x(R?). Also,
SleN(Rd) C L*(RY) for N’ > %. This motivates the following definition.



The adjoint

Now we define a formal adjoint of the operator with symbol o € Sq NN

q < 0. From Theorem 1 it follows that T, maps S(R?) to Sy/ n (R ). Also,
SleN(Rd) C L*(RY) for N’ > %. This motivates the following definition.

Definition
LetoESq’(;NN/,O ES,a/MM,,q<0 M' N > d.Then T.+ is called a
formal adJomt of T, if

(V1,02 € S(RY)  (Topilpa) = (p1]To-2) (2)

where (-|-) is the standard inner product on L*(R%).



The adjoint theorem

Theorem 10. Let o € SZ:;?N’N,, q € [—d,0], m > —d,
m* = max{|m|, |m| +m}. If N,N' € 2No, & < 35 and

[m* + (3 —8)d+4(1 — 8)](1 — 6)?

N N' >2 1
~ 1—35+ 062 > 20+ 64410,

I

then (2) is satisfied for

o (@9 = [[ e rE T nayan.



The adjoint theorem

Theorem 10. Let o € SZ:;?N’N,, q € [—d,0], m > —d,
m* = max{|m|, |m| +m}. If N,N' € 2No, & < 35 and

[m* + (3= 8)d+4(1 —9)](1 —0)2

N N' >2 1
> 1-3545° > 2q + 6d + 10,

I

then (2) is satisfied for

o (@9 = [[ e rE T nayan.

If additionally N > LN HmIt0-p)(d+2) - tpep

* +6N
0" € 5.0 L(1-8)N— pN'—|m|—(1—p)(d+2) ], N'—d—2 »



The adjoint theorem

Theorem 10. Let o € SZ:;?N’N,, q € [—d,0], m > —d,
m* = max{|m|, |m| +m}. If N,N' € 2No, & < 35 and

[m* + (3= 8)d+4(1 —9)](1 —0)2

N' >2 1
135442 , > 2q + 6d + 10,

N >

then (2) is satisfied for

o (@9 = [[ e rE T nayan.

If additionally N > LN HmIt0-p)(d+2) - tpep

* +6N
0" € 5.0 L(1-8)N— pN'—|m|—(1—p)(d+2) ], N'—d—2 »

while if additionally o € STy, and N' > |q| +2((1 — §)N — |m|) —d — 2,
then

* g, m+O0N
o< 50707 [A=8)N—|m|-d=2], [N'=|q|=2((1=8) N —|m|)+d+2]



The adjoint theorem - cont.

Theorem 10. Moreover, if (for some K € Ny)

P ) pN' +|m|+(1—-p)(d+2)+ K+1 /
~ >—_ N> N> K+d+3
T+p 10 -5 y 2 B,
then we have the following asymptotic expansion:
* 1
(@8 = > 0D &+ (@0, (3)

[vI<K

where

(K) m+5N—p(K+1)
T eSpo L(1=8)N—pN’—|m|—(1—p)(d+2)—K—1], N' =K —d—3 *



The adjoint theorem - cont.

Theorem 10. Moreover, if (for some K € Ny)

P ) pN' +|m|+(1—-p)(d+2)+ K+1 /
>~ N> N> K+d+3
i4p 15 "< 1—6 y 2 B,
then we have the following asymptotic expansion:
* 1 —
o (2,8) = Y —0¢Dio(x,&) +r(x,¢), (3
lyi<k
where
K +SN—p(K+1)
i e S::o, \_(lfpé)prle|m|7(1*P)(d+2)*K*UvN/*K7d73.

In the case o € SZ::S?N, v the asymptotic expansion (3) is valid also for

25>ty N>R AEn)UCHD - NY > gl 42((1-6) N —|m|)—d—2—2p(K+1),

in which case we obtain

(K) c Squfl,m+5N7p(K+1)
T 0,0, [(1=8)N—|m|-d—2—(1+p)(K+1)], [N’ —|q|=2((1=8) N —|m|)+d+2+2p(K+1)] *
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