Classification of classical Friedrichs operators : One dimensional scalar case

Sandeep Kumar Soni

Department of Mathematics, Faculty of Science, University of Zagreb

PMF-MO

Seminar for differential equations and numerical analysis Zagreb, 7^{th} February 2022

Joint work with Marko Erceg

IP-2018-01-2449 (MiTPDE)

Assumptions:

 $d, r \in \mathbb{N}$, $\Omega \subseteq \mathbb{R}^d$ open and bounded with Lipschitz boundary; $\mathbf{A}_k \in W^{1,\infty}(\Omega; M_r(\mathbb{C})), k \in \{1, \dots, d\}$, and $\mathbf{B} \in L^{\infty}(\Omega; M_r(\mathbb{C}))$ satisfying (a.e. on Ω):

(F1)
$$\mathbf{A}_k = \mathbf{A}_k^*;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \ge 2\mu_0 \mathbf{I}.$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^2(\Omega)^r \to \mathcal{D}'(\Omega)^r$ by

$$\mathcal{L} \mathsf{u} := \sum_{k=1}^d \partial_k (\mathbf{A}_k \mathsf{u}) + \mathbf{B} \mathsf{u} \;, \qquad \widetilde{\mathcal{L}} \mathsf{u} := -\sum_{k=1}^d \partial_k (\mathbf{A}_k \mathsf{u}) + \Big(\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \Big) \mathsf{u} \;.$$

Assumptions:

 $d, r \in \mathbb{N}$, $\Omega \subseteq \mathbb{R}^d$ open and bounded with Lipschitz boundary; $\mathbf{A}_k \in W^{1,\infty}(\Omega; M_r(\mathbb{C}))$, $k \in \{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}(\Omega; M_r(\mathbb{C}))$ satisfying (a.e. on Ω):

$$\mathbf{(F1)} \qquad \qquad \mathbf{A}_k = \mathbf{A}_k^* \, ;$$

(F2)
$$(\exists \mu_0 > 0) \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \ge 2\mu_0 \mathbf{I}.$$

Define $\mathcal{L},\widetilde{\mathcal{L}}:L^2(\Omega)^r\to \mathcal{D}'(\Omega)^r$ by

$$\mathcal{L} \mathsf{u} := \sum_{k=1}^d \partial_k (\mathbf{A}_k \mathsf{u}) + \mathbf{B} \mathsf{u} \;, \qquad \widetilde{\mathcal{L}} \mathsf{u} := -\sum_{k=1}^d \partial_k (\mathbf{A}_k \mathsf{u}) + \Big(\mathbf{B}^* + \sum_{k=1}^d \partial_k \mathbf{A}_k \Big) \mathsf{u} \;.$$

Aim: impose boundary conditions such that for any f $\in L^2(\Omega)^r$ we have a unique solution of $\mathcal{L}u = f$.

K. O. Friedrichs: *Symmetric positive linear differential equations*, Commun. Pure Appl. Math. **11** (1958) 333–418.

 $\begin{array}{l} (\mathcal{H}, \langle \cdot \mid \cdot \rangle) \text{ complex Hilbert space } (\mathcal{H}' \equiv \mathcal{H}) \text{, } \| \cdot \| := \sqrt{\langle \cdot \mid \cdot \rangle} \\ \mathcal{D} \subseteq \mathcal{H} \text{ dense subspace} \end{array}$

Definition

Let $T, \tilde{T} : \mathcal{D} \to \mathcal{H}$. The pair (T, \tilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

- (T1) $(\forall \varphi, \psi \in \mathcal{D}) \quad \langle T\varphi \mid \psi \rangle = \langle \varphi \mid \widetilde{T}\psi \rangle;$
- (T2) $(\exists c > 0) (\forall \varphi \in \mathcal{D}) \qquad ||(T + \widetilde{T})\varphi|| \leq c ||\varphi||;$

(T3) $(\exists \mu_0 > 0) (\forall \varphi \in \mathcal{D}) \qquad \langle (T + \widetilde{T})\varphi \mid \varphi \rangle \ge \mu_0 \|\varphi\|^2.$

N. Antonić, K. Burazin: *Intrinsic boundary conditions for Friedrichs systems*, Comm. Partial Diff. Eq. **35** (2010) 1690–1715.

 $T_0 := \overline{T}, \ \widetilde{T}_0 := \widetilde{\overline{T}} \text{ on } \mathcal{W}_0 (\text{closure of } \mathcal{D}) \text{ and } T_1 := \widetilde{T}^*, \ \widetilde{T}_1 := T^* \text{ on } \mathcal{W} (\text{the graph space}).$ Boundary map (form): $D : \mathcal{W} \to \mathcal{W}',$

$$[u | v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u | v \rangle - \langle u | \widetilde{T}_1 v \rangle.$$

 $T_0 := \overline{T}, \ \widetilde{T}_0 := \widetilde{\overline{T}} \text{ on } \mathcal{W}_0 (\text{closure of } \mathcal{D}) \text{ and } T_1 := \widetilde{T}^*, \ \widetilde{T}_1 := T^* \text{ on } \mathcal{W} (\text{the graph space}).$ Boundary map (form): $D : \mathcal{W} \to \mathcal{W}',$

$$[u | v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u | v \rangle - \langle u | \widetilde{T}_1 v \rangle.$$

 $(\mathcal{W}, [\cdot | \cdot])$ is an indefinite inner product space. $(\exists \ 0 \neq u \in \mathcal{W}, \ [u | u] = 0)$

 $T_0 := \overline{T}, \ \widetilde{T}_0 := \widetilde{\overline{T}} \text{ on } \mathcal{W}_0 (\text{closure of } \mathcal{D}) \text{ and } T_1 := \widetilde{T}^*, \ \widetilde{T}_1 := T^* \text{ on } \mathcal{W} (\text{the graph space}).$ Boundary map (form): $D : \mathcal{W} \to \mathcal{W}',$

$$[u | v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u | v \rangle - \langle u | \widetilde{T}_1 v \rangle.$$

 $(\mathcal{W}, [\cdot | \cdot])$ is an *indefinite inner product space*. $(\exists 0 \neq u \in \mathcal{W}, [u | u] = 0)$ For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:

$$\begin{array}{ll} (\forall \, u \in \mathcal{V}) & \quad [u \, | \, u] \geqslant 0 \ , \\ (\forall \, v \in \widetilde{\mathcal{V}}) & \quad [v \, | \, v] \leqslant 0 \ . \end{array}$$

(V2)
$$\mathcal{V}^{[\perp]} = \widetilde{\mathcal{V}}, \, \widetilde{\mathcal{V}}^{[\perp]} = \mathcal{V}.$$

 $T_0 := \overline{T}, \ \widetilde{T}_0 := \overline{T} \text{ on } \mathcal{W}_0 (\text{closure of } \mathcal{D}) \text{ and } T_1 := \widetilde{T}^*, \ \widetilde{T}_1 := T^* \text{ on } \mathcal{W} (\text{the graph space}).$ Boundary map (form): $D : \mathcal{W} \to \mathcal{W}',$

$$[u | v] := _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} := \langle T_1 u | v \rangle - \langle u | \widetilde{T}_1 v \rangle.$$

 $(\mathcal{W}, [\cdot | \cdot])$ is an *indefinite inner product space*. $(\exists 0 \neq u \in \mathcal{W}, [u | u] = 0)$ For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:

(V1)

$$\begin{array}{ccc} (\forall u \in \mathcal{V}) & [u \mid u] \ge 0 , \\ (\forall v \in \widetilde{\mathcal{V}}) & [v \mid v] \leqslant 0 . \end{array} \\ \end{array}$$
(V2)

$$\begin{array}{ccc} \mathcal{V}^{[\perp]} = \widetilde{\mathcal{V}} , \ \widetilde{\mathcal{V}}^{[\perp]} = \mathcal{V} . \end{array}$$

Well-posedness:

Theorem (Ern, Guermond, Caplain, 2007) (T1)–(T3) + (V1)–(V2) $\implies T_1|_{\mathcal{V}}, \widetilde{T}_1|_{\widetilde{\mathcal{V}}}$ bijective realisations.

Existance, multiplicity and classification

We seek for bijective closed operators $S\equiv \widetilde{T}^*|_{\mathcal{V}}$ such that

$$\overline{T} \subseteq S \subseteq \widetilde{T}^* \,,$$

and thus also S^* is bijective and $\overline{\widetilde{T}} \subseteq S^* \subseteq T^*$. We call (S, S^*) an adjoint pair of bijective realisations relative to (T, \widetilde{T}) .

Existance, multiplicity and classification

We seek for bijective closed operators $S\equiv \widetilde{T}^*|_{\mathcal{V}}$ such that

$$\overline{T} \subseteq S \subseteq \widetilde{T}^* \,,$$

and thus also S^* is bijective and $\widetilde{T} \subseteq S^* \subseteq T^*$. We call (S, S^*) an adjoint pair of bijective realisations relative to (T, \widetilde{T}) .

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)–(T3).

 (i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, T).

(ii)

$$\ker \widetilde{T}^* \neq \{0\} \And \ker T^* \neq \{0\} \implies$$

$$\ker \widetilde{T}^* = \{0\} \text{ or } \ker T^* = \{0\} \implies$$

uncountably many adjoint pairs of bijective realisations with signed boundary map only one adjoint pair of bijective realisations with signed boundary map

Let (T_0, \widetilde{T}_0) and (T_1, \widetilde{T}_1) be two pairs of mutually adjoint, closed and densely defined operators on $\mathcal H$ satisfying

$$T_0 \subseteq (\widetilde{T}_0)^* = T_1$$
 and $\widetilde{T}_0 \subseteq (T_0)^* = \widetilde{T}_1$,

which admit a pair (T_r, T_r^*) of reference operators that are closed, satisfy $T_0 \subseteq T_r \subseteq T_1$, equivalently $\widetilde{T}_0 \subseteq T_r^* \subseteq \widetilde{T}_1$, and are invertible with everywhere defined bounded inverses T_r^{-1} and $(T_r^*)^{-1}$.

Let (T_0, \widetilde{T}_0) and (T_1, \widetilde{T}_1) be two pairs of mutually adjoint, closed and densely defined operators on $\mathcal H$ satisfying

$$T_0 \subseteq (\widetilde{T}_0)^* = T_1$$
 and $\widetilde{T}_0 \subseteq (T_0)^* = \widetilde{T}_1$,

which admit a pair (T_r, T_r^*) of reference operators that are closed, satisfy $T_0 \subseteq T_r \subseteq T_1$, equivalently $\widetilde{T}_0 \subseteq T_r^* \subseteq \widetilde{T}_1$, and are invertible with everywhere defined bounded inverses T_r^{-1} and $(T_r^*)^{-1}$. Then (i) $\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \ker T_1$ and $\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \ker \widetilde{T}_1$. Let (T_0, \widetilde{T}_0) and (T_1, \widetilde{T}_1) be two pairs of mutually adjoint, closed and densely defined operators on $\mathcal H$ satisfying

$$T_0 \subseteq (\widetilde{T}_0)^* = T_1$$
 and $\widetilde{T}_0 \subseteq (T_0)^* = \widetilde{T}_1$,

which admit a pair (T_r, T_r^*) of reference operators that are closed, satisfy $T_0 \subseteq T_r \subseteq T_1$, equivalently $\widetilde{T}_0 \subseteq T_r^* \subseteq \widetilde{T}_1$, and are invertible with everywhere defined bounded inverses T_r^{-1} and $(T_r^*)^{-1}$. Then (i) $\operatorname{dom} T_1 = \operatorname{dom} T_r \dotplus \ker T_1$ and $\operatorname{dom} \widetilde{T}_1 = \operatorname{dom} T_r^* \dotplus \ker \widetilde{T}_1$.

The corresponding (non-orthogonal) projections

$$\begin{array}{ll} p_{\mathrm{r}}: \operatorname{dom} T_{1} \to \operatorname{dom} T_{\mathrm{r}} \,, & p_{\tilde{\mathrm{r}}}: \operatorname{dom} \widetilde{T}_{1} \to \operatorname{dom} T_{\mathrm{r}}^{*} \\ p_{\mathrm{k}}: \operatorname{dom} T_{1} \to \operatorname{ker} T_{1} \,, & p_{\tilde{\mathrm{k}}}: \operatorname{dom} \widetilde{T}_{1} \to \operatorname{ker} \widetilde{T}_{1} \,, \end{array}$$

satisfying

$$p_{\rm r} = T_{\rm r}^{-1} T_{\rm 1} , \qquad p_{\rm \tilde{r}} = (T_{\rm r}^*)^{-1} \widetilde{T}_{\rm 1} , p_{\rm k} = \mathbb{1} - p_{\rm r} , \qquad p_{\rm \tilde{k}} = \mathbb{1} - p_{\rm \tilde{r}} ,$$

and being continuous with respect to the graph norms.

S.K. Soni (UNIZG)

$$\left\{(A,A^*): \widetilde{T}_0 \subseteq A \subseteq T_1\right\} \stackrel{1:1}{\longleftrightarrow} \left\{(B,B^*): B: \mathcal{Z} \to \widetilde{\mathcal{Z}} \text{ closed densely defined}\right\},$$

where $\mathcal{Z}, \widetilde{\mathcal{Z}}$ run through closed subspaces of $\ker T_1$ and $\ker \widetilde{T}_1$ respectively.

$$\left\{(A,A^*): \widetilde{T}_0 \subseteq A \subseteq T_1\right\} \overset{1:1}{\longleftrightarrow} \left\{(B,B^*): B: \mathcal{Z} \to \widetilde{\mathcal{Z}} \text{ closed densely defined}\right\},$$

where Z, \widetilde{Z} run through closed subspaces of $\ker T_1$ and $\ker \widetilde{T}_1$ respectively. The correspondence is given by

$$\operatorname{dom} A = \left\{ u \in \operatorname{dom} T_1 : p_k u \in \operatorname{dom} B, P_{\widetilde{\mathcal{Z}}}(T_1 u) = B(p_k u) \right\},$$
$$\operatorname{dom} A^* = \left\{ v \in \operatorname{dom} \widetilde{T}_1 : p_{\tilde{k}} v \in \operatorname{dom} B^*, P_{\mathcal{Z}}(\widetilde{T}_1 v) = B^*(p_{\tilde{k}} v) \right\}.$$

$$\left\{(A,A^*): \widetilde{T}_0 \subseteq A \subseteq T_1\right\} \overset{1:1}{\longleftrightarrow} \left\{(B,B^*): B: \mathcal{Z} \to \widetilde{\mathcal{Z}} \text{ closed densely defined}\right\},$$

where Z, \widetilde{Z} run through closed subspaces of $\ker T_1$ and $\ker \widetilde{T}_1$ respectively. The correspondence is given by

$$\operatorname{dom} A = \left\{ u \in \operatorname{dom} T_1 : p_k u \in \operatorname{dom} B, P_{\widetilde{\mathcal{Z}}}(T_1 u) = B(p_k u) \right\}, \\ \operatorname{dom} A^* = \left\{ v \in \operatorname{dom} \widetilde{T}_1 : p_{\widetilde{k}} v \in \operatorname{dom} B^*, P_{\mathcal{Z}}(\widetilde{T}_1 v) = B^*(p_{\widetilde{k}} v) \right\}.$$

Conversely, by

$$dom B = p_k dom A, \qquad \mathcal{Z} = \overline{dom B}, \qquad B(p_k u) = P_{\widetilde{\mathcal{Z}}}(T_1 u), dom B^* = p_{\widetilde{k}} dom A^*, \qquad \widetilde{\mathcal{Z}} = \overline{dom B^*}, \qquad B^*(p_{\widetilde{k}} v) = P_{\mathcal{Z}}(\widetilde{T}_1 v),$$

where $P_{\mathcal{Z}}$ and $P_{\widetilde{\mathcal{Z}}}$ are the *orthogonal* projections from \mathcal{H} onto \mathcal{Z} and $\widetilde{\mathcal{Z}}$.

$$\left\{(A,A^*): \widetilde{T}_0 \subseteq A \subseteq T_1\right\} \overset{1:1}\longleftrightarrow \left\{(B,B^*): B: \mathcal{Z} \to \widetilde{\mathcal{Z}} \text{ closed densely defined}\right\},$$

where Z, \tilde{Z} run through closed subspaces of $\ker T_1$ and $\ker \tilde{T}_1$ respectively. The correspondence is given by

$$\operatorname{dom} A = \left\{ u \in \operatorname{dom} T_1 : p_k u \in \operatorname{dom} B, P_{\widetilde{\mathcal{Z}}}(T_1 u) = B(p_k u) \right\},\$$
$$\operatorname{dom} A^* = \left\{ v \in \operatorname{dom} \widetilde{T}_1 : p_{\widetilde{k}} v \in \operatorname{dom} B^*, P_{\mathcal{Z}}(\widetilde{T}_1 v) = B^*(p_{\widetilde{k}} v) \right\}.$$

Conversely, by

$$dom B = p_k dom A, \qquad \mathcal{Z} = \overline{dom B}, \qquad B(p_k u) = P_{\widetilde{\mathcal{Z}}}(T_1 u), dom B^* = p_{\widetilde{k}} dom A^*, \qquad \widetilde{\mathcal{Z}} = \overline{dom B^*}, \qquad B^*(p_{\widetilde{k}} v) = P_{\mathcal{Z}}(\widetilde{T}_1 v),$$

where $P_{\mathcal{Z}}$ and $P_{\widetilde{\mathcal{Z}}}$ are the *orthogonal* projections from \mathcal{H} onto \mathcal{Z} and $\widetilde{\mathcal{Z}}$.

G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa **22** (1968) 425–513.

N. Antonić, M.Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.

S.K. Soni (UNIZG)

 (T_0,\widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

 $\mathcal{W} = \mathcal{W}_0 + \ker T_1 + \ker \widetilde{T}_1.$

 (T_0, \widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

$$\mathcal{W} = \mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1.$$

 $\Omega = (a,b), \ a < b, \ \mathcal{D} = C^\infty_c(a,b) \ \text{and} \ \mathcal{H} = L^2(a,b). \ T, \widetilde{T}: \mathcal{D} \to \mathcal{H}:$

$$T\varphi:=(\alpha\varphi)'+\beta\varphi\qquad\text{and}\qquad\widetilde{T}\varphi:=-(\alpha\varphi)'+(\overline{\beta}+\alpha')\varphi\;.$$

 $\text{Here }\alpha\in W^{1,\infty}((a,b);\mathbb{R})\text{, }\beta\in L^{\infty}((a,b);\mathbb{C})\text{ and for some }\mu_{0}>0\text{, }2\Re\beta+\alpha'\geq 2\mu_{0}>0.$

 (T_0, \widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

$$\mathcal{W} = \mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1.$$

 $\Omega=(a,b), \ a < b, \ \mathcal{D}=C^\infty_c(a,b) \ \text{and} \ \mathcal{H}=L^2(a,b). \ T, \widetilde{T}:\mathcal{D} \to \mathcal{H}:$

$$T\varphi:=(\alpha\varphi)'+\beta\varphi\qquad\text{and}\qquad\widetilde{T}\varphi:=-(\alpha\varphi)'+(\overline{\beta}+\alpha')\varphi\;.$$

Here $\alpha \in W^{1,\infty}((a,b);\mathbb{R})$, $\beta \in L^{\infty}((a,b);\mathbb{C})$ and for some $\mu_0 > 0$, $2\Re\beta + \alpha' \ge 2\mu_0 > 0$. The graph space :

 $\mathcal{W} = \{ u \in \mathcal{H} : (\alpha u)' \in \mathcal{H} \}, \quad \|u\|_{\mathcal{W}} := \|u\| + \|(\alpha u)'\|.$

 (T_0,\widetilde{T}_0) is a joint pair of closed abstract Friedrichs operators then

$$\mathcal{W} = \mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1.$$

 $\Omega=(a,b), \ a < b, \ \mathcal{D}=C^\infty_c(a,b) \ \text{and} \ \mathcal{H}=L^2(a,b). \ T, \widetilde{T}:\mathcal{D} \to \mathcal{H}:$

$$T\varphi:=(\alpha\varphi)'+\beta\varphi\qquad\text{and}\qquad\widetilde{T}\varphi:=-(\alpha\varphi)'+(\overline{\beta}+\alpha')\varphi\;.$$

Here $\alpha \in W^{1,\infty}((a,b);\mathbb{R})$, $\beta \in L^{\infty}((a,b);\mathbb{C})$ and for some $\mu_0 > 0$, $2\Re\beta + \alpha' \ge 2\mu_0 > 0$. The graph space :

$$\mathcal{W} = \{ u \in \mathcal{H} : (\alpha u)' \in \mathcal{H} \}, \quad \|u\|_{\mathcal{W}} := \|u\| + \|(\alpha u)'\|.$$

Equivalently,

$$u \in \mathcal{W} \iff \alpha u \in H^1(a, b)$$
.

So, by Sobolev embedding $\alpha u \in C(a, b)$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x)u(x)$ is not meaningful.

Lemma

Let $I := [a, b] \setminus \alpha^{-1}(\{0\})$. Then $\mathcal{W} \subseteq H^1_{loc}(I)$, i.e. for any $u \in \mathcal{W}$ and $[c, d] \subseteq I$, c < d, we have $u|_{[c,d]} \in H^1(c, d)$.

Lemma

Let $I := [a, b] \setminus \alpha^{-1}(\{0\})$. Then $\mathcal{W} \subseteq H^1_{loc}(I)$, i.e. for any $u \in \mathcal{W}$ and $[c, d] \subseteq I$, c < d, we have $u|_{[c,d]} \in H^1(c, d)$.

Proof: Since α is continuous, I is relatively open in [a, b]. Let us take $[c, d] \subseteq I$, c < d, define $\alpha_0 := \min_{x \in [c,d]} |\alpha(x)|$. Let $u \in C_c^{\infty}(\mathbb{R})$, then

$$\begin{aligned} \|u'\|_{L^{2}(c,d)} &= \left\|\frac{1}{\alpha}\alpha u'\right\|_{L^{2}(c,d)} \leq \frac{1}{\alpha_{0}}\|\alpha u'\|_{L^{2}(c,d)} \\ &= \frac{1}{\alpha_{0}}\|(\alpha u)' - \alpha' u\|_{L^{2}(c,d)} \leq \frac{1}{\alpha_{0}}\Big(\|(\alpha u)'\|_{L^{2}(c,d)} + \|\alpha' u\|_{L^{2}(c,d)}\Big) \\ &\leq \frac{1}{\alpha_{0}}\Big(\|(\alpha u)'\| + \|\alpha'\|_{L^{\infty}(a,b)}\|u\|\Big) \leq \frac{1 + \|\alpha\|_{W^{1,\infty}(a,b)}}{\alpha_{0}}\|u\|_{W} \,. \end{aligned}$$

By density of $C_c^{\infty}(\mathbb{R})$ in \mathcal{W} we get $u|_{[c,d]} \in H^1(c,d)$ and there exists C > 0 (dependent on c,d) :

$$\|u\|_{H^1(c,d)} \le C \|u\|_{\mathcal{W}} , \quad u \in \mathcal{W} .$$

The boundary operator can be written explicitly as

$$_{\mathcal{W}'}\langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a), \quad u, v \in \mathcal{W}$$

where we define

$$(\alpha u \overline{v})(x) := \left\{ \begin{array}{ccc} 0 & , & \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} & , & \alpha(x) \neq 0 \end{array} \right. , \quad x \in [a, b] \, .$$

The boundary operator can be written explicitly as

$$_{\mathcal{W}'}\langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a) , \quad u, v \in \mathcal{W} ,$$

where we define

$$(\alpha u \overline{v})(x) := \begin{cases} 0 & , \quad \alpha(x) = 0 \\ \alpha(x)u(x)\overline{v(x)} & , \quad \alpha(x) \neq 0 \end{cases}, \quad x \in [a, b].$$

The domain of the closures T_0 and \widetilde{T}_0 satisfies $\mathcal{W}_0 = \operatorname{cl}_{\mathcal{W}} C_c^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$\mathcal{W}_0 = \left\{ u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0 \right\}.$$

The boundary operator can be written explicitly as

$$_{\mathcal{W}'}\langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a) , \quad u, v \in \mathcal{W} ,$$

where we define

$$(\alpha u \overline{v})(x) := \begin{cases} 0 & , \quad \alpha(x) = 0 \\ \alpha(x)u(x)\overline{v(x)} & , \quad \alpha(x) \neq 0 \end{cases}, \quad x \in [a, b].$$

The domain of the closures T_0 and \widetilde{T}_0 satisfies $\mathcal{W}_0 = \operatorname{cl}_{\mathcal{W}} C_c^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$\mathcal{W}_0 = \left\{ u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0 \right\}.$$

Proof: Since ker $D = W_0$, so it is sufficient to prove that this set is ker D. Let $u \in W$ such that $(\alpha u)(a) = (\alpha u)(b) = 0$, then

$$\forall v \in \mathcal{W}, \quad _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v}) (b) - (\alpha u \overline{v}) (a) = 0 - 0 = 0.$$

So, $\{u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0\} \subseteq \ker D.$

The boundary operator can be written explicitly as

$$_{\mathcal{W}'}\langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a) , \quad u, v \in \mathcal{W} ,$$

where we define

$$(\alpha u \overline{v})(x) := \begin{cases} 0 & , \quad \alpha(x) = 0 \\ \alpha(x)u(x)\overline{v(x)} & , \quad \alpha(x) \neq 0 \end{cases}, \quad x \in [a, b].$$

The domain of the closures T_0 and T_0 satisfies $\mathcal{W}_0 = \operatorname{cl}_{\mathcal{W}} C_c^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$\mathcal{W}_0 = \left\{ u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0 \right\}.$$

Proof: Since ker $D = W_0$, so it is sufficient to prove that this set is ker D. Let $u \in W$ such that $(\alpha u)(a) = (\alpha u)(b) = 0$, then

$$\forall v \in \mathcal{W}, \quad _{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v}) (b) - (\alpha u \overline{v}) (a) = 0 - 0 = 0$$

So, $\{u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0\} \subseteq \ker D$. Conversely, let $u \in \ker D \subset \mathcal{W}$ then for any $v \in H^1(a, b) \subseteq \mathcal{W}$,

$$0 = {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a) = (\alpha u)(b) \overline{v(b)} - (\alpha u)(a) \overline{v(a)} .$$

Here, v was continuous (Sobolev embedding). So, $(\alpha u)(b) = 0, (\alpha u)(a) = 0$. Hence, $\ker D \subseteq \{u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0\}.$

S.K. Soni (UNIZG)

Lemma

$$\dim(\mathcal{W}/\mathcal{W}_0) = \begin{cases} 2 & , \quad \alpha(a)\alpha(b) \neq 0 \\ 1 & , \quad \left(\alpha(a) = 0 \land \alpha(b) \neq 0\right) \lor \left(\alpha(a) \neq 0 \land \alpha(b) = 0\right) \\ 0 & , \quad \alpha(a) = \alpha(b) = 0 . \end{cases}$$

Proof: If $\alpha(a)\alpha(b) \neq 0$, then choose $\varphi, \psi \in \mathcal{W}$, such that $\varphi(a) = 1$, $\varphi(b) = 0$ and $\psi(a) = 0$, $\psi(b) = 1$. Define $\hat{\varphi} := \varphi + \mathcal{W}_0$ and $\hat{\psi} := \psi + \mathcal{W}_0$. Then $E := \{\hat{\varphi}, \hat{\psi}\}$ is a basis of $\mathcal{W}/\mathcal{W}_0$.

If E were linearly dependent then for some non-zero scalar r we would have $\hat{\psi} = r\hat{\varphi}$, implying $\hat{\psi} - r\hat{\varphi} = \hat{0} = \mathcal{W}_0$. Hence, $\psi - r\varphi \in \mathcal{W}_0$, so

$$(\alpha(\psi - r\varphi))(a) = (\alpha(\psi - r\varphi))(b) = 0.$$

But,

$$(\alpha(\psi - r\varphi))(a) = \alpha(a)\psi(a) - r\alpha(a)\varphi(a) = 0 - r\alpha(a) = -r\alpha(a) \neq 0,$$

which is a contradiction. Hence, E is linearly independent.

Lemma

$$\dim(\mathcal{W}/\mathcal{W}_0) = \begin{cases} 2 & , & \alpha(a)\alpha(b) \neq 0 \\ 1 & , & \left(\alpha(a) = 0 \land \alpha(b) \neq 0\right) \lor \left(\alpha(a) \neq 0 \land \alpha(b) = 0\right) \\ 0 & , & \alpha(a) = \alpha(b) = 0 \end{cases}$$

Proof: If $\alpha(a)\alpha(b) \neq 0$, then choose $\varphi, \psi \in \mathcal{W}$, such that $\varphi(a) = 1$, $\varphi(b) = 0$ and $\psi(a) = 0$, $\psi(b) = 1$. Define $\hat{\varphi} := \varphi + \mathcal{W}_0$ and $\hat{\psi} := \psi + \mathcal{W}_0$. Then $E := \{\hat{\varphi}, \hat{\psi}\}$ is a basis of $\mathcal{W}/\mathcal{W}_0$.

If E were linearly dependent then for some non-zero scalar r we would have $\hat{\psi} = r\hat{\varphi}$, implying $\hat{\psi} - r\hat{\varphi} = \hat{0} = \mathcal{W}_0$. Hence, $\psi - r\varphi \in \mathcal{W}_0$, so

$$(\alpha(\psi - r\varphi))(a) = (\alpha(\psi - r\varphi))(b) = 0.$$

But,

$$(\alpha(\psi - r\varphi))(a) = \alpha(a)\psi(a) - r\alpha(a)\varphi(a) = 0 - r\alpha(a) = -r\alpha(a) \neq 0,$$

which is a contradiction. Hence, E is linearly independent. Now let $u \in \mathcal{W},$ then

$$u-u(a)\varphi-u(b)\psi\in\mathcal{W}_0$$
,

means E spans $\mathcal{W}/\mathcal{W}_0$. So, E is a basis of $\mathcal{W}/\mathcal{W}_0$, hence $\dim(\mathcal{W}/\mathcal{W}_0) = 2$.

S.K. Soni (UNIZG)

$$u \in \mathcal{W} \implies u - u(b)\varphi \in \mathcal{W}_0$$

we get $\operatorname{span}\{\varphi + W_0\} = W/W_0$. Hence, $\dim(W/W_0) = 1$. Similarly, if $\alpha(a) \neq 0$ and $\alpha(b) = 0$, $\dim(W/W_0) = 1$.

$$u \in \mathcal{W} \implies u - u(b)\varphi \in \mathcal{W}_0$$
,

we get $\operatorname{span}\{\varphi + W_0\} = W/W_0$. Hence, $\dim(W/W_0) = 1$. Similarly, if $\alpha(a) \neq 0$ and $\alpha(b) = 0$, $\dim(W/W_0) = 1$. If $\alpha(a) = \alpha(b) = 0$, then D = 0, hence $W = \ker(D) = W_0$, implying $\dim(W/W_0) = 0$.

$$u \in \mathcal{W} \implies u - u(b)\varphi \in \mathcal{W}_0$$
,

we get $\operatorname{span}\{\varphi + W_0\} = W/W_0$. Hence, $\dim(W/W_0) = 1$. Similarly, if $\alpha(a) \neq 0$ and $\alpha(b) = 0$, $\dim(W/W_0) = 1$. If $\alpha(a) = \alpha(b) = 0$, then D = 0, hence $W = \ker(D) = W_0$, implying $\dim(W/W_0) = 0$.

Remark :

i) If $\min_{x \in [a,b]} |\alpha(x)| > \alpha_0 > 0$, then $\dim(H^1(a,b)/H_0^1(a,b)) = 2$.

$$u \in \mathcal{W} \implies u - u(b)\varphi \in \mathcal{W}_0$$
,

we get $\operatorname{span}\{\varphi + W_0\} = W/W_0$. Hence, $\dim(W/W_0) = 1$. Similarly, if $\alpha(a) \neq 0$ and $\alpha(b) = 0$, $\dim(W/W_0) = 1$. If $\alpha(a) = \alpha(b) = 0$, then D = 0, hence $W = \ker(D) = W_0$, implying $\dim(W/W_0) = 0$.

Remark :

- i) If $\min_{x \in [a,b]} |\alpha(x)| > \alpha_0 > 0$, then $\dim(H^1(a,b)/H_0^1(a,b)) = 2$.
- ii) By the decomposition we have

$$\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = \dim \mathcal{W}/\mathcal{W}_0.$$

Thus, when $\alpha(a)\alpha(b) = 0$ there is only one bijective realisation of T_0 . When case $\alpha(a)\alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\dim(\ker T_1) = \dim(\ker \widetilde{T}_1)$.

$$u \in \mathcal{W} \implies u - u(b)\varphi \in \mathcal{W}_0$$
,

we get $\operatorname{span}\{\varphi + W_0\} = W/W_0$. Hence, $\dim(W/W_0) = 1$. Similarly, if $\alpha(a) \neq 0$ and $\alpha(b) = 0$, $\dim(W/W_0) = 1$. If $\alpha(a) = \alpha(b) = 0$, then D = 0, hence $W = \ker(D) = W_0$, implying $\dim(W/W_0) = 0$.

Remark :

- i) If $\min_{x \in [a,b]} |\alpha(x)| > \alpha_0 > 0$, then $\dim(H^1(a,b)/H_0^1(a,b)) = 2$.
- ii) By the decomposition we have

$$\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = \dim \mathcal{W}/\mathcal{W}_0.$$

Thus, when $\alpha(a)\alpha(b) = 0$ there is only one bijective realisation of T_0 . When case $\alpha(a)\alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\dim(\ker T_1) = \dim(\ker \widetilde{T}_1)$.

We shall justify and improve these conclusions by a direct inspection.

Case 1: $\alpha(a)\alpha(b) = 0$: For $\alpha(a) = \alpha(b) = 0$, We have $D \equiv 0$. So, $\mathcal{W}_0 = \ker(D) = \mathcal{W}$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}}) = (\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is (T_1, \widetilde{T}_1) .

Case 1: $\alpha(a)\alpha(b) = 0$: For $\alpha(a) = \alpha(b) = 0$, We have $D \equiv 0$. So, $\mathcal{W}_0 = \ker(D) = \mathcal{W}$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}}) = (\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is (T_1, \widetilde{T}_1) .

For $\alpha(a) = 0, \alpha(b) > 0$, We have :

$$\begin{aligned} \forall u, v \in \mathcal{W}, \quad {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} &= \alpha(b)u(b)\overline{v(b)} \ . \\ \forall u \in \mathcal{W}, \quad {}_{\mathcal{W}'} \langle Du, u \rangle_{\mathcal{W}} &= \alpha(b)|u(b)|^2 \geq 0 \ . \\ \text{And}, \quad \mathcal{W}_0 &= \{u \in \mathcal{W} : u(b) = 0\} \ . \end{aligned}$$

Case 1: $\alpha(a)\alpha(b) = 0$: For $\alpha(a) = \alpha(b) = 0$, We have $D \equiv 0$. So, $W_0 = \ker(D) = W$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}}) = (\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is (T_1, \widetilde{T}_1) .

For $\alpha(a) = 0, \alpha(b) > 0$, We have :

$$\begin{aligned} \forall u, v \in \mathcal{W}, \quad {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} &= \alpha(b)u(b)\overline{v(b)} . \\ \forall u \in \mathcal{W}, \quad {}_{\mathcal{W}'} \langle Du, u \rangle_{\mathcal{W}} &= \alpha(b)|u(b)|^2 \geq 0 . \\ \text{And}, \quad \mathcal{W}_0 &= \{u \in \mathcal{W} : u(b) = 0\} . \end{aligned}$$

So, pair $(\mathcal{W}, \mathcal{W}_0)$ satisfies condition (V1). Furthermore, $(T_1|_{\mathcal{W}}, \widetilde{T}_1|_{\mathcal{W}_0}) = (T_1, \widetilde{T}_0)$ is trivially a pair of mutually adjoint operators and so it is a pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}) . Since this implies that ker $T_1 = \{0\}$, (T_1, \widetilde{T}_0) is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}) .

Case 1: $\alpha(a)\alpha(b) = 0$: For $\alpha(a) = \alpha(b) = 0$, We have $D \equiv 0$. So, $W_0 = \ker(D) = W$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}}) = (\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is (T_1, \widetilde{T}_1) .

For $\alpha(a) = 0, \alpha(b) > 0$, We have :

$$\begin{aligned} \forall u, v \in \mathcal{W}, \quad {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} &= \alpha(b)u(b)\overline{v(b)} . \\ \forall u \in \mathcal{W}, \quad {}_{\mathcal{W}'} \langle Du, u \rangle_{\mathcal{W}} &= \alpha(b)|u(b)|^2 \geq 0 . \\ \text{And}, \quad \mathcal{W}_0 &= \{u \in \mathcal{W} : u(b) = 0\} . \end{aligned}$$

So, pair $(\mathcal{W}, \mathcal{W}_0)$ satisfies condition (V1). Furthermore, $(T_1|_{\mathcal{W}}, \widetilde{T}_1|_{\mathcal{W}_0}) = (T_1, \widetilde{T}_0)$ is trivially a pair of mutually adjoint operators and so it is a pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}) . Since this implies that ker $T_1 = \{0\}$, (T_1, \widetilde{T}_0) is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}) . Similarly, for $\alpha(a) = 0, \alpha(b) < 0$, we have $(\mathcal{V}, \widetilde{\mathcal{V}}) = (\mathcal{W}_0, \mathcal{W})$.

$$(\mathcal{V}, \widetilde{\mathcal{V}}) = \begin{cases} (\mathcal{W}, \mathcal{W}_0) &, & (\alpha(a) = 0 \land \alpha(b) \ge 0) \lor (\alpha(a) \le 0 \land \alpha(b) = 0) \\ (\mathcal{W}_0, \mathcal{W}) &, & (\alpha(a) = 0 \land \alpha(b) \le 0) \lor (\alpha(a) \ge 0 \land \alpha(b) = 0) \end{cases}$$

$$(\alpha \varphi)' + \beta \varphi = 0$$
 and $-(\alpha \varphi)' + (\overline{\beta} + \alpha')\varphi = 0$

do not have any non-trivial solution in \mathcal{W} .

$$(\alpha\varphi)'+\beta\varphi=0 \quad \text{and} \quad -(\alpha\varphi)'+(\overline{\beta}+\alpha')\varphi=0$$

do not have any non-trivial solution in \mathcal{W} .

If exactly one of numbers $\alpha(a)$ and $\alpha(b)$ is zero, then from Remark (ii) we have $\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = 1$ and so one of the dimensions is 0.

$$(\alpha \varphi)' + \beta \varphi = 0$$
 and $-(\alpha \varphi)' + (\overline{\beta} + \alpha')\varphi = 0$

do not have any non-trivial solution in \mathcal{W} .

If exactly one of numbers $\alpha(a)$ and $\alpha(b)$ is zero, then from Remark (ii) we have $\dim(\ker T_1) + \dim(\ker \tilde{T}_1) = 1$ and so one of the dimensions is 0. Specifically, if $\alpha(a) = 0$ and $\alpha(b) > 0$, then (T_1, \tilde{T}_0) is the adjoint pair and so $\dim(\ker T_1) = 0$. Hence $\dim(\ker \tilde{T}_1) = 1$.

$$(\alpha \varphi)' + \beta \varphi = 0$$
 and $-(\alpha \varphi)' + (\overline{\beta} + \alpha') \varphi = 0$

do not have any non-trivial solution in \mathcal{W} .

If exactly one of numbers $\alpha(a)$ and $\alpha(b)$ is zero, then from Remark (ii) we have $\dim(\ker T_1) + \dim(\ker \tilde{T}_1) = 1$ and so one of the dimensions is 0. Specifically, if $\alpha(a) = 0$ and $\alpha(b) > 0$, then (T_1, \tilde{T}_0) is the adjoint pair and so $\dim(\ker T_1) = 0$. Hence $\dim(\ker \tilde{T}_1) = 1$.

Case 2: $\alpha(a)\alpha(b) < 0$: $\mathcal{W}_0 = \{u \in \mathcal{W} : u(a) = u(b) = 0\}$ For $\alpha(a) > 0$ and $\alpha(b) < 0$. Then for any $u \in \mathcal{W}$ we have

$$_{\mathcal{W}'}\langle Du, u \rangle_{\mathcal{W}} = \alpha(b)|u(b)|^2 - \alpha(a)|u(a)|^2 \le 0.$$

Hence, we get $(T_0, \tilde{T}_1) = (T_1|_{W_0}, \tilde{T}_1|_W)$ is the only pair of mutually adjoint bijective realisations relative to (T, \tilde{T}) .

Case 2: $\alpha(a)\alpha(b) < 0$: $\mathcal{W}_0 = \{u \in \mathcal{W} : u(a) = u(b) = 0\}$ For $\alpha(a) > 0$ and $\alpha(b) < 0$. Then for any $u \in \mathcal{W}$ we have

$$_{\mathcal{W}'}\langle Du, u \rangle_{\mathcal{W}} = \alpha(b)|u(b)|^2 - \alpha(a)|u(a)|^2 \le 0.$$

Hence, we get $(T_0, \tilde{T}_1) = (T_1|_{W_0}, \tilde{T}_1|_W)$ is the only pair of mutually adjoint bijective realisations relative to (T, \tilde{T}) .

Analogously, for $\alpha(a) < 0$ and $\alpha(b) > 0$ we see that (T_1, \tilde{T}_0) is the only pair of mutually adjoint bijective realisations relative to (T, \tilde{T}) .

Case 2: $\alpha(a)\alpha(b) < 0$: $\mathcal{W}_0 = \{u \in \mathcal{W} : u(a) = u(b) = 0\}$ For $\alpha(a) > 0$ and $\alpha(b) < 0$. Then for any $u \in \mathcal{W}$ we have

$$_{\mathcal{W}'}\langle Du, u \rangle_{\mathcal{W}} = \alpha(b)|u(b)|^2 - \alpha(a)|u(a)|^2 \le 0.$$

Hence, we get $(T_0, \tilde{T}_1) = (T_1|_{W_0}, \tilde{T}_1|_W)$ is the only pair of mutually adjoint bijective realisations relative to (T, \tilde{T}) .

Analogously, for $\alpha(a) < 0$ and $\alpha(b) > 0$ we see that (T_1, \tilde{T}_0) is the only pair of mutually adjoint bijective realisations relative to (T, \tilde{T}) .

Kernels : Although in this case $\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = 2$, we have only one bijective realisation. So, for $\alpha(a) > 0$ we have $(\dim(\ker T_1), \dim(\ker \widetilde{T}_1)) = (2, 0)$, while for $\alpha(a) < 0$ it is $(\dim(\ker T_1), \dim(\ker \widetilde{T}_1)) = (0, 2)$.

Case 2: $\alpha(a)\alpha(b) < 0$: $\mathcal{W}_0 = \{u \in \mathcal{W} : u(a) = u(b) = 0\}$ For $\alpha(a) > 0$ and $\alpha(b) < 0$. Then for any $u \in \mathcal{W}$ we have

$$_{\mathcal{W}'}\langle Du, u \rangle_{\mathcal{W}} = \alpha(b)|u(b)|^2 - \alpha(a)|u(a)|^2 \le 0.$$

Hence, we get $(T_0, \tilde{T}_1) = (T_1|_{W_0}, \tilde{T}_1|_W)$ is the only pair of mutually adjoint bijective realisations relative to (T, \tilde{T}) .

Analogously, for $\alpha(a) < 0$ and $\alpha(b) > 0$ we see that (T_1, \tilde{T}_0) is the only pair of mutually adjoint bijective realisations relative to (T, \tilde{T}) .

Kernels : Although in this case $\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = 2$, we have only one bijective realisation. So, for $\alpha(a) > 0$ we have $(\dim(\ker T_1), \dim(\ker \widetilde{T}_1)) = (2,0)$, while for $\alpha(a) < 0$ it is $(\dim(\ker T_1), \dim(\ker \widetilde{T}_1)) = (0,2)$.

Let $\alpha(a) < 0$. We have $\alpha^{-1}(\{0\}) \neq \emptyset$.

Case 3: $\alpha(a)\alpha(b) > 0$: $\mathcal{W}_0 = \{u \in \mathcal{W} : u(a) = u(b) = 0\}$, the boundary operator is $_{\mathcal{W}'}\langle Du, v \rangle_{\mathcal{W}} = \alpha(b)u(b)\overline{v(b)} - \alpha(a)u(a)\overline{v(a)}, \quad u, v \in \mathcal{W}.$

Let us define

$$\mathcal{V} := \left\{ u \in \mathcal{W} : u(b) = \sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a) \right\} \,.$$

Case 3: $\alpha(a)\alpha(b) > 0$: $\mathcal{W}_0 = \{u \in \mathcal{W} : u(a) = u(b) = 0\}$, the boundary operator is $_{\mathcal{W}'}\langle Du, v \rangle_{\mathcal{W}} = \alpha(b)u(b)\overline{v(b)} - \alpha(a)u(a)\overline{v(a)}, \quad u, v \in \mathcal{W}.$

Let us define

$$\mathcal{V} := \left\{ u \in \mathcal{W} : u(b) = \sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a) \right\} \,.$$

For an arbitrary $u \in \mathcal{V}$ and $v \in \mathcal{W}$ we have

$$\begin{split} {}_{\mathcal{W}'} \langle Du, v \rangle_{\mathcal{W}} &= \alpha(b)u(b)\overline{v(b)} - \alpha(a)u(a)\overline{v(a)} \\ &= \alpha(b) \left(u(b)\overline{v(b)} - \sqrt{\frac{\alpha(a)}{\alpha(b)}}u(a)\sqrt{\frac{\alpha(a)}{\alpha(b)}}\overline{v(a)} \right) \\ &= \alpha(b)u(b)\overline{\left(v(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}v(a)\right)} \,. \end{split}$$

In particular,

$$(\forall u, v \in \mathcal{V})$$
 $\mathcal{W}(Du, v) = 0,$

implying that $(\mathcal{V}, \mathcal{V})$ satisfies condition (V1) and that $\mathcal{V} \subseteq \mathcal{V}^{[\perp]}$.

S.K. Soni (UNIZG)

$$lpha(b)u(b)igg(v(b)-\sqrt{rac{lpha(a)}{lpha(b)}}v(a)igg)=0\;.$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b) = \sqrt{\frac{\alpha(a)}{\alpha(b)}}v(a)$, i.e. $v \in \mathcal{V}$.

$$lpha(b)u(b)igg(v(b)-\sqrt{rac{lpha(a)}{lpha(b)}}v(a)igg)=0\;.$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b) = \sqrt{\frac{\alpha(a)}{\alpha(b)}}v(a)$, i.e. $v \in \mathcal{V}$.

Therefore, (T_r, T_r^*) is indeed a mutually adjoint pair of bijective realisations relative to (T, \tilde{T}) . It is evident that $\mathcal{W}_0 \neq \mathcal{V} \neq \mathcal{W}$, hence there are infinitely many bijective realisations.

$$lpha(b)u(b)igg(v(b)-\sqrt{rac{lpha(a)}{lpha(b)}}v(a)igg)=0\;.$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b) = \sqrt{\frac{\alpha(a)}{\alpha(b)}}v(a)$, i.e. $v \in \mathcal{V}$.

Therefore, (T_r, T_r^*) is indeed a mutually adjoint pair of bijective realisations relative to (T, \tilde{T}) . It is evident that $\mathcal{W}_0 \subsetneqq \mathcal{V} \subsetneqq \mathcal{W}$, hence there are infinitely many bijective realisations.

In this case we have dim ker $T_1 = \dim \ker \widetilde{T} = 1$. Implies that the only (non-trivial) choice is dom $B = \mathcal{Z} = \ker T_1$ and $\widetilde{\mathcal{Z}} = \operatorname{dom} \widetilde{T}_1$. Then there exists $(c + id) \in \mathbb{C} \setminus \{0\}$ such that $B\varphi = (c + id)\widetilde{\varphi}$ (to get bijective realisations).

$$lpha(b)u(b)igg(v(b)-\sqrt{rac{lpha(a)}{lpha(b)}}v(a)igg)=0\;.$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b) = \sqrt{\frac{\alpha(a)}{\alpha(b)}}v(a)$, i.e. $v \in \mathcal{V}$.

Therefore, (T_r, T_r^*) is indeed a mutually adjoint pair of bijective realisations relative to (T, \tilde{T}) . It is evident that $\mathcal{W}_0 \subsetneqq \mathcal{V} \subsetneqq \mathcal{W}$, hence there are infinitely many bijective realisations.

In this case we have dim ker $T_1 = \dim \ker \widetilde{T} = 1$. Implies that the only (non-trivial) choice is dom $B = \mathcal{Z} = \ker T_1$ and $\widetilde{\mathcal{Z}} = \operatorname{dom} \widetilde{T}_1$. Then there exists $(c + id) \in \mathbb{C} \setminus \{0\}$ such that $B\varphi = (c + id)\widetilde{\varphi}$ (to get bijective realisations).

From the classification theory we have $u \in W$ belongs to dom $T_{c,d}$ if and only if

$$P_{\ker \widetilde{T}_1}(T_1u) = B(p_ku)$$

Non-orthogonal projections : For any $u \in W$ there exist unique $u_r \in V$ and $u_k \in \ker T_1$ such that $u = u_r + u_k$. Moreover, u_k is of the form $C_u \varphi$, so using

$$u(a) = u_{\rm r}(a) + C_u \varphi(a)$$
$$u(b) = u_{\rm r}(b) + C_u \varphi(b)$$

and $u_{\mathrm{r}}(b) = \sqrt{rac{lpha(a)}{lpha(b)}} u_{\mathrm{r}}(a)$. We get

$$C_u = \frac{u(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}u(a)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}$$

Non-orthogonal projections : For any $u \in W$ there exist unique $u_r \in V$ and $u_k \in \ker T_1$ such that $u = u_r + u_k$. Moreover, u_k is of the form $C_u \varphi$, so using

$$u(a) = u_{\rm r}(a) + C_u \varphi(a)$$
$$u(b) = u_{\rm r}(b) + C_u \varphi(b)$$

and $u_{\mathrm{r}}(b) = \sqrt{\frac{lpha(a)}{lpha(b)}} u_{\mathrm{r}}(a)$. We get

$$C_u = \frac{u(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}u(a)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}$$

Thus, the corresponding non-orthogonal projection $p_k : \mathcal{W} \to \ker T_1$ is equal to $p_k(u) = C_u \varphi$.

Non-orthogonal projections : For any $u \in W$ there exist unique $u_r \in V$ and $u_k \in \ker T_1$ such that $u = u_r + u_k$. Moreover, u_k is of the form $C_u \varphi$, so using

$$u(a) = u_{\rm r}(a) + C_u \varphi(a)$$
$$u(b) = u_{\rm r}(b) + C_u \varphi(b)$$

and $u_{\mathrm{r}}(b) = \sqrt{\frac{lpha(a)}{lpha(b)}} u_{\mathrm{r}}(a)$. We get

$$C_u = \frac{u(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}u(a)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}$$

Thus, the corresponding non-orthogonal projection $p_k: \mathcal{W} \to \ker T_1$ is equal to $p_k(u) = C_u \varphi$. Similarly, $p_{\tilde{k}}: \mathcal{W} \to \ker \tilde{T}_1$ is given by $p_{\tilde{k}}(u) = \tilde{C}_u \tilde{\varphi}$, where

$$ilde{C}_u = rac{u(b) - \sqrt{rac{lpha(a)}{lpha(b)}}u(a)}{ ilde{arphi}(b) - \sqrt{rac{lpha(a)}{lpha(b)}} ilde{arphi}(a)} \; .$$

Orthogonal projection :

$$\begin{split} P_{\ker \tilde{T}_1}(T_1 u) &= \frac{1}{\|\tilde{\varphi}\|^2} \langle T_1 u \mid \tilde{\varphi} \rangle \tilde{\varphi} = \frac{1}{\|\tilde{\varphi}\|^2} \mathcal{W}' \langle D u, \tilde{\varphi} \rangle_{\mathcal{W}} \tilde{\varphi} \\ &= \frac{1}{\|\tilde{\varphi}\|^2} \Big(\alpha(b) u(b) \overline{\tilde{\varphi}(b)} - \alpha(a) u(a) \overline{\tilde{\varphi}(a)} \Big) \tilde{\varphi} \,. \end{split}$$

Orthogonal projection :

$$\begin{split} P_{\ker \tilde{T}_1}(T_1 u) &= \frac{1}{\|\tilde{\varphi}\|^2} \langle T_1 u \mid \tilde{\varphi} \, \rangle \tilde{\varphi} = \frac{1}{\|\tilde{\varphi}\|^2} {}_{\mathcal{W}'} \langle D u, \tilde{\varphi} \, \rangle_{\mathcal{W}} \tilde{\varphi} \\ &= \frac{1}{\|\tilde{\varphi}\|^2} \Big(\alpha(b) u(b) \overline{\tilde{\varphi}(b)} - \alpha(a) u(a) \overline{\tilde{\varphi}(a)} \Big) \tilde{\varphi} \; . \end{split}$$

So, the equation $P_{\ker \widetilde{T}_1}(T_1 u) = B(p_{\mathbf{k}} u)$ becomes,

$$\frac{1}{\|\tilde{\varphi}\|^2} \Big(\alpha(b)u(b)\overline{\tilde{\varphi}(b)} - \alpha(a)u(a)\overline{\tilde{\varphi}(a)} \Big) \tilde{\varphi} = (c+id)C_u \tilde{\varphi} \ .$$

Which gives $u \in \mathcal{W}$ belongs to dom $T_{c,d}$ if and only if

$$[1]\left(\frac{\alpha(b)\overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}\right)u(b) = \left(\frac{\alpha(a)\overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}\right)u(a) \ .$$

Orthogonal projection :

$$\begin{split} P_{\ker \tilde{T}_1}(T_1 u) &= \frac{1}{\|\tilde{\varphi}\|^2} \langle T_1 u \mid \tilde{\varphi} \rangle \tilde{\varphi} = \frac{1}{\|\tilde{\varphi}\|^2} {}_{\mathcal{W}'} \langle D u, \tilde{\varphi} \rangle_{\mathcal{W}} \tilde{\varphi} \\ &= \frac{1}{\|\tilde{\varphi}\|^2} \Big(\alpha(b) u(b) \overline{\tilde{\varphi}(b)} - \alpha(a) u(a) \overline{\tilde{\varphi}(a)} \Big) \tilde{\varphi} \; . \end{split}$$

So, the equation $P_{\ker \widetilde{T}_1}(T_1 u) = B(p_{\mathbf{k}} u)$ becomes,

$$\frac{1}{\|\tilde{\varphi}\|^2} \Big(\alpha(b)u(b)\overline{\tilde{\varphi}(b)} - \alpha(a)u(a)\overline{\tilde{\varphi}(a)} \Big) \tilde{\varphi} = (c+id)C_u \tilde{\varphi} \; .$$

Which gives $u \in \mathcal{W}$ belongs to $\operatorname{dom} T_{c,d}$ if and only if

$$[1]\left(\frac{\alpha(b)\overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}\right)u(b) = \left(\frac{\alpha(a)\overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}\right)u(a) \ .$$

Similarly, $u \in \mathcal{W}$ is in $\operatorname{dom} T^*_{c,d}$ if and only if

$$[2]\left(\alpha(b)\overline{\varphi(b)} - \frac{\|\tilde{\varphi}\|^2(c-id)}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\tilde{\varphi}(a)}\right)u(b) = \left(\alpha(a)\overline{\varphi(a)} - \frac{\|\tilde{\varphi}\|^2(c-id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\tilde{\varphi}(a)}\right)u(a) \ .$$

So, the set of all pairs of mutually adjoint bijective realisations relative to (T,\tilde{T}) is given by

$$[3] \qquad \left\{ (T_{c,d}, T_{c,d}^*) : c, d \in \mathbb{R}^2 \setminus \{(0,0)\} \right\} \bigcup \left\{ (T_r, T_r^*) \right\}$$

Kernels : If $\min_{x \in [a,b]} |\alpha(x)| > 0$, then simply

$$\varphi(x) = \frac{1}{\alpha(x)} \exp\left(-\int \frac{\beta(x)}{\alpha(x)} \, dx\right) \qquad \text{and} \qquad \tilde{\varphi}(x) = \exp\left(\int \frac{\overline{\beta(x)}}{\alpha(x)} \, dx\right) \, .$$

lf

So, the set of all pairs of mutually adjoint bijective realisations relative to (T,\tilde{T}) is given by

[3]
$$\left\{ (T_{c,d}, T_{c,d}^*) : c, d \in \mathbb{R}^2 \setminus \{ (0,0) \} \right\} \bigcup \left\{ (T_{r}, T_{r}^*) \right\}$$

Kernels : If $\min_{x \in [a,b]} |\alpha(x)| > 0$, then simply

$$\varphi(x) = \frac{1}{\alpha(x)} \exp\left(-\int \frac{\beta(x)}{\alpha(x)} dx\right) \quad \text{and} \quad \tilde{\varphi}(x) = \exp\left(\int \frac{\overline{\beta(x)}}{\alpha(x)} dx\right).$$
$$\alpha^{-1}(\{0\}) \cap (a,b) \neq \emptyset,$$

So, the set of all pairs of mutually adjoint bijective realisations relative to (T,\tilde{T}) is given by

[3]
$$\left\{ (T_{c,d}, T_{c,d}^*) : c, d \in \mathbb{R}^2 \setminus \{ (0,0) \} \right\} \bigcup \left\{ (T_{r}, T_{r}^*) \right\}$$

Kernels : If $\min_{x \in [a,b]} |\alpha(x)| > 0$, then simply

$$\begin{split} \varphi(x) &= \frac{1}{\alpha(x)} \exp\left(-\int \frac{\beta(x)}{\alpha(x)} \, dx\right) \qquad \text{and} \qquad \tilde{\varphi}(x) &= \exp\left(\int \frac{\overline{\beta(x)}}{\alpha(x)} \, dx\right) \, .\\ \alpha^{-1}(\{0\}) \cap (a,b) \neq \emptyset, \end{split}$$

Summary :

lf

α at end-points	No. of bij. realisations	$(\mathcal{V},\widetilde{\mathcal{V}})$
$\alpha(a)\alpha(b) \leq 0$	1	$\begin{array}{ c c c c c }\hline \alpha(a) \geq 0 \land \alpha(b) \leq 0 & (\mathcal{W}_0, \mathcal{W}) \\ \hline \alpha(a) \leq 0 \land \alpha(b) \geq 0 & (\mathcal{W}, \mathcal{W}_0) \\ \hline \end{array}$
$\alpha(a)\alpha(b) > 0$	∞	[3] (see [1] and [2])

S.K. Soni (UNIZG)

Example 1 : Take the interval $\Omega:=(0,2)$ and coefficients $\alpha(x)=1-x$ and $\beta=1.$ Then $T\varphi=((1-x)\varphi)'+\varphi$

and

$$\widetilde{T}\varphi = -((1-x)\varphi)'$$
.

Here $2\Re\beta + \alpha' = 2 - 1 = 1 > 0$ on (0, 2), meaning that (T, \tilde{T}) is a pair of abstract Friedrichs operators.

Example 1 : Take the interval $\Omega := (0,2)$ and coefficients $\alpha(x) = 1-x$ and $\beta = 1$. Then $T\varphi = ((1-x)\varphi)' + \varphi$

and

$$\widetilde{T}\varphi = -((1-x)\varphi)'$$
.

Here $2\Re\beta + \alpha' = 2 - 1 = 1 > 0$ on (0, 2), meaning that (T, \tilde{T}) is a pair of abstract Friedrichs operators.

Solving on (0,1) and (1,2) separately we get that for $\varphi \in \ker T_1$ necessarily

$$\varphi = \begin{cases} c_1 & , & \text{in } (0,1) \\ c_2 & , & \text{in } (1,2) \end{cases}$$

for some constants $c_1, c_2 \in \mathbb{C}$.

Example 1 : Take the interval $\Omega := (0,2)$ and coefficients $\alpha(x) = 1-x$ and $\beta = 1$. Then $T\varphi = ((1-x)\varphi)' + \varphi$

and

$$\widetilde{T}\varphi = -((1-x)\varphi)'$$
.

Here $2\Re\beta + \alpha' = 2 - 1 = 1 > 0$ on (0, 2), meaning that (T, \tilde{T}) is a pair of abstract Friedrichs operators.

Solving on (0,1) and (1,2) separately we get that for $\varphi \in \ker T_1$ necessarily

$$\varphi = \begin{cases} c_1 & , & \text{in } (0,1) \\ c_2 & , & \text{in } (1,2) , \end{cases}$$

for some constants $c_1, c_2 \in \mathbb{C}$. We have $\varphi \in \mathcal{W}$. Indeed, it is evident that $\varphi \in L^2(0,2)$, while for $\psi \in C_c^{\infty}(0,2)$ we have

$$\begin{split} \int_0^2 (1-x)\varphi(x)\psi'(x)\,dx &= \int_0^1 (1-x)\varphi(x)\psi'(x)\,dx + \int_1^2 (1-x)\varphi(x)\psi'(x)\,dx \\ &= c_1\int_0^1 (1-x)\psi'(x)\,dx + c_2\int_1^2 (1-x)\psi'(x)\,dx \\ &= c_1\int_0^1 \psi(x)\,dx + c_2\int_1^2 \psi(x)\,dx = \int_0^2 \varphi(x)\psi(x)\,dx \,. \end{split}$$

This means $((1-x)\varphi)' = -\varphi \in L^2(0,2)$, thus $\varphi \in W$. Therefore, dim ker $T_1 = 2$ (since we have two parameters in the definition of φ).

This means $((1 - x)\varphi)' = -\varphi \in L^2(0, 2)$, thus $\varphi \in W$. Therefore, $\dim \ker T_1 = 2$ (since we have two parameters in the definition of φ). On the other hand, $\tilde{\varphi} \in \ker \tilde{T}_1$ implies

$$ilde{arphi}(x) = \left\{ egin{array}{ccc} rac{d_1}{1-x} &, & x \in (0,1) \\ rac{d_2}{1-x} &, & x \in (1,2) \end{array}
ight. ,$$

for some constants $d_1, d_2 \in \mathbb{C}$.

This means $((1 - x)\varphi)' = -\varphi \in L^2(0, 2)$, thus $\varphi \in W$. Therefore, dim ker $T_1 = 2$ (since we have two parameters in the definition of φ). On the other hand, $\tilde{\varphi} \in \ker \tilde{T}_1$ implies

$$\tilde{\varphi}(x) = \begin{cases} \frac{d_1}{1-x} &, x \in (0,1) \\ \frac{d_2}{1-x} &, x \in (1,2) \end{cases},$$

for some constants $d_1, d_2 \in \mathbb{C}$.

But $\tilde{\varphi} \in L^2(0,2)$ if and only if $d_1 = d_2 = 0$. Hence, $\ker \tilde{T}_1 = \{0\}$ and $\dim \ker \tilde{T}_1 = 0$, justifying the results obtained in Case 2.

This means $((1 - x)\varphi)' = -\varphi \in L^2(0, 2)$, thus $\varphi \in W$. Therefore, dim ker $T_1 = 2$ (since we have two parameters in the definition of φ). On the other hand, $\tilde{\varphi} \in \ker \tilde{T}_1$ implies

$$\tilde{\varphi}(x) = \begin{cases}
\frac{d_1}{1-x} & , \quad x \in (0,1) \\
\frac{d_2}{1-x} & , \quad x \in (1,2) ,
\end{cases}$$

for some constants $d_1, d_2 \in \mathbb{C}$.

But $\tilde{\varphi} \in L^2(0,2)$ if and only if $d_1 = d_2 = 0$. Hence, $\ker \tilde{T}_1 = \{0\}$ and $\dim \ker \tilde{T}_1 = 0$, justifying the results obtained in Case 2.

It is interesting to note that for $c_1 \neq c_2$ we have $\varphi' \notin L^2(0,2)$, because $\varphi' = (c_2 - c_1)\delta_1$ (here δ_1 is the Dirac measure at 1) and so $\varphi \notin H^1(0,2)$. Thus, $H^1(0,2) \subsetneq W$.

This means $((1-x)\varphi)' = -\varphi \in L^2(0,2)$, thus $\varphi \in W$. Therefore, $\dim \ker T_1 = 2$ (since we have two parameters in the definition of φ). On the other hand, $\tilde{\varphi} \in \ker \tilde{T}_1$ implies

$$\tilde{\varphi}(x) = \begin{cases}
\frac{d_1}{1-x} & , \quad x \in (0,1) \\
\frac{d_2}{1-x} & , \quad x \in (1,2) ,
\end{cases}$$

for some constants $d_1, d_2 \in \mathbb{C}$.

But $\tilde{\varphi} \in L^2(0,2)$ if and only if $d_1 = d_2 = 0$. Hence, $\ker \tilde{T}_1 = \{0\}$ and $\dim \ker \tilde{T}_1 = 0$, justifying the results obtained in Case 2.

It is interesting to note that for $c_1 \neq c_2$ we have $\varphi' \notin L^2(0,2)$, because $\varphi' = (c_2 - c_1)\delta_1$ (here δ_1 is the Dirac measure at 1) and so $\varphi \notin H^1(0,2)$. Thus, $H^1(0,2) \subsetneq W$.

Moreover, $\tilde{\varphi} \in H^1_{\text{loc}}([0,2] \setminus \{1\})$ for any choice of parameters d_1, d_2 . Indeed, for any subinterval $[c,d] \subseteq [0,2] \setminus \{1\}$ we have $\tilde{\varphi}|_{(c,d)} \in H^1(c,d)$. Since $\tilde{\varphi} \notin \mathcal{W}$ this shows that \mathcal{W} is indeed a proper subspace of $H^1_{\text{loc}}([0,2] \setminus \{1\})$, i.e. $\mathcal{W} \subsetneqq H^1_{\text{loc}}([0,2] \setminus \{1\})$.

...thank you for your attention :)