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Classical Friedrichs operators

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;
Ap e Whe(Q;M,(C)), k € {1,...,d}, and B € L°°(9; M,(C)) satisfying (a.e. on Q):

(F1) Ay = Ag;

d
(F2) Gpo>0) B+B"+> 0kAx >2u0l.

k=1

Define £, L : L*(Q)" — D'(Q)" by

d d

d
Lu:= Zak(Aku) + Bu, Lu:= — Zak(Aku) + (B* + Z(’)kAk)u .
k=1

k=1 k=1
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Classical Friedrichs operators

Assumptions:
d,r € N, Q C R open and bounded with Lipschitz boundary;
Ap e Whe(Q;M,(C)), k € {1,...,d}, and B € L°°(9; M,(C)) satisfying (a.e. on Q):

(F1) Ay = Ag;

d
(F2) Gpo>0) B+B"+> 0kAx >2u0l.

k=1

Define £, L : L*(Q)" — D'(Q)" by

d d d
Lu:= Zak(Aku) + Bu, Lu:= — Zak(Aku) + (B* + Z(’)kAk)u .
k=1

k=1 k=1

Aim: impose boundary conditions such that for any f € L*(Q)" we have a unique
solution of Lu =f.

@ K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure
Appl. Math. 11 (1958) 333-418.
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Abstract Friedrichs operators

(H,{-]-)) complex Hilbert space (H' =H), || || :== /(-] ")
D C H dense subspace

Definition

Let T,ZN“ : D — H. The pair (T, ’1~") is called a joint pair of abstract Friedrichs operators
if the following holds:

(T1) Vo, €D)  (To|p) = {p|Ty);
(T2) Fe>0)(VeeD) (T +Dell < cllell;
(T3) Qpo>0)(VeeD) ((T+Dele) > pollel®.

4

@ A. Ern, J.L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert
operators related to Friedrichs’ systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.

D N. Antoni¢, K. Burazin: Intrinsic boundary conditions for Friedrichs systems,
Comm. Partial Diff. Eq. 35 (2010) 1690-1715.
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Characterisation of joint pair of abstract Friedrichs operators

Ty :=T, To = % on Wy(closure of D) and T := T* ,Tl := T on W(the graph space).
Boundary map (form): D: W — W',

[u]v] := wr (Du,v)w = (Thu | v) — (u| Tiv).
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Characterisation of joint pair of abstract Friedrichs operators

Ty :=T, To = % on Wy(closure of D) and T := T* ,Tl := T on W(the graph space).
Boundary map (form): D: W — W',

[u]v] := wr (Du,v)w = (Thu | v) — (u| Tiv).

(W, [-]°]) is an indefinite inner product space.  (30#u e W, [u|u]=0)
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Characterisation of joint pair of abstract Friedrichs operators

Ty :=T, To := % on Wy(closure of D) and T := T* ,Tl := T on W(the graph space).
Boundary map (form): D: W — W',

[u]v] := wr (Du,v)w = (Thu | v) — (u| Tiv).
(W, [-]°]) is an indefinite inner product space.  (30#u e W, [u|u]=0)

For V, % C W we introduce two conditions:

V1) (Vuef) [ulu] 20,
(Vv ey) [v]v] 0.
(V2) v =y p =y,
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Characterisation of joint pair of abstract Friedrichs operators

Ty :=T, To := % on Wy(closure of D) and T := T* ,Tl := T on W(the graph space).
Boundary map (form): D: W — W',

[u]v] := wr (Du,v)w = (Thu | v) — (u| Tiv).
(W, [-]°]) is an indefinite inner product space.  (30#u e W, [u|u]=0)

For V, % C W we introduce two conditions:

V1) (Vuef) [ulu] 20,
(Vv ey) [v]v] 0.
(V2) v =y p =y,

Well-posedness:

Theorem (Ern, Guermond, Caplain, 2007)
(T1)-(T3) + (V1)-(V2) = T1|v,1~“1|\~, bijective realisations .
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Existance, multiplicity and classification

We seek for bijective closed operators S = T*|v such that
TCSCT*,

and thus also S™ is bijective and T C S§* CT*. We call (S,S5) an adjoint pair of
bijective realisations relative to (7', T).
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Existance, multiplicity and classification

We seek for bijective closed operators S = f*|v such that
TCSCT*,

and thus also S is bijective and T C 8" CT*. We call (S,S5") an adjoint pair of
bijective realisations relative to (7', T).

Theorem (Antoni¢, Erceg, Michelangeli, 2017 )

Let (T, T) satisfies (T1)~(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map
relative to (T, T).

(i)

~ uncountably many adjoint pairs of bijective
ker T # {0} & kerT* # {0} — o o0y Many acjomt p J
realisations with signed boundary map

= . only one adjoint pair of bijective realisations
kerT" = {0} or kerT" = {0} = =~ |
with signed boundary map
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Classification 1/2

Let (To,To) and (T1,T}) be two pairs of mutually adjoint, closed and densely defined
operators on H satisfying

To C (To)* =T and To C (To)" = T,

which admit a pair (71, T)") of reference operators that are closed, satisfy To C T C T4,

equivalently Ty C T;* C T1, and are invertible with everywhere defined bounded inverses
T and (T3) 7.
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Classification 1/2

Let (To,To) and (T1,T}) be two pairs of mutually adjoint, closed and densely defined
operators on H satisfying

To C (To)* =T and To C (To)" = T,

which admit a pair (71, T)") of reference operators that are closed, satisfy To C T C T4,
equivalently To CTr C Tl, and are invertible with everywhere defined bounded inverses
T and (T3) 7.

Then

O]

domTi = domT; + ker T} and domT) = dom T TkerTy.
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Classification 1/2

Let (To,To) and (T1,T}) be two pairs of mutually adjoint, closed and densely defined
operators on H satisfying

To C (To)* =T and To C (To)" = T,

which admit a pair (71, T)") of reference operators that are closed, satisfy To C T C T4,
equivalently To CTr C Tl, and are invertible with everywhere defined bounded inverses
T and (T3) 7.
Then
O] ~ N

domT; = dom7T; 4 ker T and domT); = domT, +kerTy.

The corresponding (non-orthogonal) projections

pr : dom Ty — dom Ty, pr : dom ﬁ — dom Ty,
px : dom Ty — ker Ty pp :dom 71 — ker 71,
satisfying B
pe = T, 'Th, pe = ()71,
px = 1—p, pp = 1—ps,

and being continuous with respect to the graph norms.
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Classification 2/2

(if)
{(A, A): Ty CAC T1} &5 8(B,B*) 1 B: 2 — Z closed densely deﬁned} ,

where Z, Z run through closed subspaces of ker 77 and ker T respectively.
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Classification 2/2

(if)
{(A, A): Ty CAC T1} &5 8(B,B*) 1 B: 2 — Z closed densely deﬁned} ,

where Z, Z run through closed subspaces of ker 77 and ker T respectively.
The correspondence is given by

dom A = {u €domTi : pyu € dom B, Pz(Tiu) = B(pku)},

dom A™ = {v € domT; : pgv € dom B*, Pz(Tv) = B*(pf{v)}.
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Classification 2/2

(if)
{(A, A): Ty CAC T1} &5 8(B,B*) 1 B: 2 — Z closed densely deﬁned} ,

where Z, Z run through closed subspaces of ker 77 and ker T respectively.
The correspondence is given by

dom A = {u €domTi : pyu € dom B, Pz(Tiu) = B(pku)},

dom A™ = {v € domT; : pgv € dom B*, Pz(Tv) = B*(pf{v)}.
Conversely, by

domB = pxdomA, Z = domB, B(pxu) =
domB* = p;domA*, Z = domB*, B*(pyv) =

where Pz and Pz are the orthogonal projections from H onto Z and Z.
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Classification 2/2

(if)
{(A, A): Ty CAC T1} &5 8(B,B*) 1 B: 2 — Z closed densely deﬁned} ,

where Z, Z run through closed subspaces of ker 77 and ker T respectively.
The correspondence is given by

dom A = {u €domTi : pyu € dom B, Pz(Tiu) = B(pku)},

dom A™ = {v € domT; : pgv € dom B*, Pz(Tv) = B*(pf{v)}.
Conversely, by
domB = pxdomA, 2,: = @ B(pxu) =
domB* = p;domA*, Z = domB*, B*(pyv) =
where Pz and Pz are the orthogonal projections from H onto Z and Z.

ﬁ G. Grubb: A characterization of the non-local boundary value problems associated
with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.

@ N. Antoni¢, M.Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space
framework: solvability and multiplicity, J. Differential Equations 263 (2017)
8264-8294.
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One-dimensional scalar case: Preliminaries 1/5

(To, fo) is a joint pair of closed abstract Friedrichs operators then

W = Wy+ ker T + ker’_ﬁ.
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One-dimensional scalar case: Preliminaries 1/5

Theorem

(To, fo) is a joint pair of closed abstract Friedrichs operators then

W = Wy+ ker T + ker’_ﬁ.

Q= (a,b), a <b, D=C>(a,b) and H = L*(a,b). T,T:D — H :

To:=(ap) +8p and  To:=—(ap) + (B +a)p.

Here o € W1>°((a,b); R), 8 € L>=((a,b);C) and for some jig > 0, 2RB+a’ > 2u0 > 0.
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One-dimensional scalar case: Preliminaries 1/5

Theorem

(To, fo) is a joint pair of closed abstract Friedrichs operators then

W = Wy+ ker T + ker’_ﬁ.

Q= (a,b), a <b, D=C>(a,b) and H = L*(a,b). T,T:D — H :

Ty :=(ap) +Bp and  Tp:=—(ap) +(B+a)p.
Here o € W1>°((a,b); R), 8 € L>=((a,b);C) and for some jig > 0, 2RB+a’ > 2u0 > 0.
The graph space :

W={ueH: (o) €H}, Ilullw = |lull +[|(au)] .
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One-dimensional scalar case: Preliminaries 1/5

Theorem

(To, fo) is a joint pair of closed abstract Friedrichs operators then

W = Wy+ ker T + ker’_ﬁ.

Q= (a,b), a <b, D=C>(a,b) and H = L*(a,b). T,T:D — H :

Ty :=(ap) +Bp and  Tp:=—(ap) +(B+a)p.
Here o € W1>°((a,b); R), 8 € L>=((a,b);C) and for some jig > 0, 2RB+a’ > 2u0 > 0.
The graph space :

W={ueH: (o) €H}, Ilullw = |lull +[|(au)] .

Equivalently ,
u€EW <= auc H'(a,b) .

So, by Sobolev embedding au € C(a,b). Implies the evaluation (au)(x) is well defined.
However, u is not necessarily continuous so a(z)u(z) is not meaningful.
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One-dimensional scalar case: Preliminaries 2/5

Lemma

Let I :=[a,b] \ o *({0}). Then W C Hj. (I), i.e. foranyuw € W and [c,d] C I, ¢ < d,
we have ul..q) € H' (c, d).

S.K. Soni  (UNIZG)
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One-dimensional scalar case: Preliminaries 2/5

Lemma

Let I :=[a,b] \ o *({0}). Then W C Hj. (I), i.e. foranyuw € W and [c,d] C I, ¢ < d,
we have ul..q) € H' (c, d).

Proof : Since « is continuous, I is relatively open in [a,b]. Let us take [¢,d] C I, ¢ < d,
define ap 1= mingcpc,q) |a(x)|. Let u € C°(R), then

! 1 ’ 1 ’
[l ey = || o < oz e

L2(c,d)

1 1
070”(04“)/ - O/UHLQ(c,d) < 070 (||(04U)/||L2(c,d) + ||0/U||L2(c,d))

A

1

ac (@)l + 1o oy lull) <
By density of C2°(R) in W we get ul.,q € H'(c,d) and there exists C' > 0 (dependent
on ¢, d) :

lullzre,a) < Cllullw , weW.
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One-dimensional scalar case: Preliminaries 3/5

The boundary operator can be written explicitly as
wr{ Du,v)w = (aun)(b) — (auv)(a) , u,veW,

where we define

(aui)(fc) ;:{ a(z)u(z)o(z) a(m);
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One-dimensional scalar case: Preliminaries 3/5

The boundary operator can be written explicitly as
wr{ Du,v)w = (auv)(b) — (awv)(a) , u,v €W,

where we define

_ o ., af@)=0 cela
(auv) () = { a()u(z)v(z) , alz)#0 € [a,b].

The domain of the closures Ty and fo satisfies Wy = clw CZ°(R), is characterised as

Wo = {u eW : (au)(a) = (au)(b) = o} :

|
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One-dimensional scalar case: Preliminaries 3/5

The boundary operator can be written explicitly as
wr{ Du,v)w = (auv)(b) — (awv)(a) , u,v €W,
where we define
_ o , a(z)=0
@@ ={ Qi | 20

The domain of the closures Ty and fo satisfies Wy = clw CZ°(R), is characterised as

z € [a,b].

Lemma

Wo = {u EW : (au)(a) = (au)(b) = o} :

Proof : Since ker D = W, so it is sufficient to prove that this set is ker D. Let u € W
such that (au)(a) = (au)(b) = 0, then

Yo eW, i Du,vhw = (auv) (b) — (auv) (a) =0—-0=0.
So, {u € W: (au)(a) = (au)(b) = 0} C ker D.
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One-dimensional scalar case: Preliminaries 3/5

The boundary operator can be written explicitly as
wr{ Du,v)w = (auv)(b) — (awv)(a) , u,v €W,
where we define
_ o , a(z)=0
@@ ={ Qi | 20

The domain of the closures Ty and fo satisfies Wy = clw CZ°(R), is characterised as

z € [a,b].

Lemma

Wo = {u EW : (au)(a) = (au)(b) = o} :

Proof : Since ker D = W, so it is sufficient to prove that this set is ker D. Let u € W
such that (au)(a) = (au)(b) = 0, then

Yo eW, i Du,vhw = (auv) (b) — (auv) (a) =0—-0=0.
So, {u € W: (au)(a) = (au)(b) = 0} C ker D. Conversely, let u € ker D C W then for
any v € H'(a,b) C W,
0 = il D, v)w = (au)(b) — (aup)(a) = (@) (b)o(B) — (aw)(@)u(a) -

Here, v was continuous ( Sobolev embedding ). So, (au)(b) = 0, (au)(a) = 0. Hence,
ker D C {u € W: (au)(a) = (au)(b) = 0}.
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One-dimensional scalar case: Preliminaries 4/5

:o),

dim(W/Wo) e

H
2
|
o
>
2
=
RN
E
<
RN
=
>
2

Proof : If a(a)a(b) # 0, then choose ¢, € W, such that p(a) =1, ¢(b) =0 and
¥(a) =0, 1(b) = 1. Define ¢ := ¢ + Wy and 9 := 1) + Wy. Then E := {¢,1} is a
basis of W/W.

If E were linearly dependent then for some non-zero scalar r we would have 1/) =ry,

implying 1/) —rp= 0 = W,. Hence, ¢ — re € W, so
(ap —rp))(a) = (a(th —71¢)) () = 0.
But,
(a(¥ - 1¢)) (@) = a(a)p(a) - ra(a)p(a) = 0 — ra(a) = —ra(a) £ 0,

which is a contradiction. Hence, E is linearly independent.
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One-dimensional scalar case: Preliminaries 4/5

Lemma

dim(W/Wo) =

H
2
|
o
>
2
=
RN
E
<
RN
=
>
2

=0),

Proof : If a(a)a(b) # 0, then choose ¢, € W, such that p(a) =1, ¢(b) =0 and
W(a) =0, P(b) = 1. Define ¢ := @ + Wy and ¢ := ¢ + Wy. Then E := {¢, 4} is a
basis of W/W.

If E were linearly dependent then for some non-zero scalar r we would have 1/) =ry,
implying 1/) —r$=0=W,. Hence, ) — r¢ € Wp, so

(a(¥ —r¢))(a) = (a( —r¢))(b) = 0.

But,

(a(® - r9))(a) = ala)¥(a) — ra(a)p(a) = 0 — ra(a) = —ra(a) #0,

which is a contradiction. Hence, E is linearly independent.
Now let v € W, then
u—u(a)p —u(b)y € Wy,

means E spans W/Wy. So, E is a basis of W/W), hence dim(W /W) = 2.

S.K. Soni  (UNIZG) Classification of classical Friedrichs operators : One dimensional scalar case



One-dimensional scalar case: Preliminaries 5/5

If a(a) =0 and a(b) # 0, then we take ¢ € W such that ¢(b) = 1. Since,
ueW = u—u(b)p € Wy,

we get span{p + Wy} = W/Wy. Hence, dim(W/Wy) = 1.
Similarly, if a(a) # 0 and a(b) = 0, dim(W/Wy) = 1.
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One-dimensional scalar case: Preliminaries 5/5

If a(a) =0 and a(b) # 0, then we take ¢ € W such that ¢(b) = 1. Since,
ueW = u—u(b)p € Wy,

we get span{p + Wy} = W/Wy. Hence, dim(W/Wy) = 1.
Similarly, if a(a) # 0 and a(b) = 0, dim(W/Wy) = 1.
If a(a) = a(b) =0, then D = 0, hence W = ker(D) = Wy, implying dim(W/W,) = 0.
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One-dimensional scalar case: Preliminaries 5/5

If a(a) =0 and a(b) # 0, then we take ¢ € W such that ¢(b) = 1. Since,
ueW = u—u(b)p € Wy,

we get span{p + Wy} = W/Wy. Hence, dim(W/Wy) = 1.
Similarly, if a(a) # 0 and a(b) = 0, dim(W/Wy) = 1.
If a(a) = a(b) =0, then D = 0, hence W = ker(D) = Wy, implying dim(W/W,) = 0.
Remark :
i) If minge(q,p) [o(z)| > o > 0, then dim(H"(a,b)/H(a,b)) = 2.
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One-dimensional scalar case: Preliminaries 5/5

If a(a) =0 and a(b) # 0, then we take ¢ € W such that ¢(b) = 1. Since,
ueW = u—u(b)p € Wy,

we get span{p + Wy} = W/Wy. Hence, dim(W/Wy) = 1.
Similarly, if a(a) # 0 and a(b) = 0, dim(W/Wy) = 1.
If a(a) = a(b) =0, then D =0, hence W = ker(D) = Wy, implying dim(W /W) = 0.
Remark :
i) If minge(q,p) [o(z)| > o > 0, then dim(H"(a,b)/H(a,b)) = 2.
ii) By the decomposition we have

dim(ker T1) + dim(ker 71) = dim W/ W, .

Thus, when a(a)a(b) = 0 there is only one bijective realisation of Tp. When case
a(a)a(b) # 0 there are infinitely many bijective realisations if and only if
dim(ker T1) = dim(ker T1).
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One-dimensional scalar case: Preliminaries 5/5

If a(a) =0 and a(b) # 0, then we take ¢ € W such that ¢(b) = 1. Since,
ueW = u—u(b)p € Wy,

we get span{p + Wy} = W/Wy. Hence, dim(W/Wp) = 1.
Similarly, if a(a) # 0 and a(b) = 0, dim(W/Wy) = 1.
If a(a) = a(b) =0, then D = 0, hence W = ker(D) = Wy, implying dim(W/W,) = 0.

Remark :
i) If minge(q,p) [o(z)| > o > 0, then dim(H"(a,b)/H(a,b)) = 2.
ii) By the decomposition we have
dim(ker T1) + dim(ker 71) = dim W/ W, .

Thus, when a(a)a(b) = 0 there is only one bijective realisation of Tp. When case
a(a)a(b) # 0 there are infinitely many bijective realisations if and only if
dim(ker T1) = dim(ker T1).

We shall justify and improve these conclusions by a direct inspection.
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Classification 1/8

Case 1: a(a)a(b) = 0: For a(a) = a(b) =0, We have D = 0. So, Wy = ker(D) =W,
thus the only possible choice is (V,V) = (W, W). Hence, the only possible pair of
mutually adjoint bijective realisation is (71, 7T1).
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Classification 1/8

Case 1: a(a)a(b) = 0: For a(a) = a(b) =0, We have D = 0. So, Wy = ker(D) =W,
thus the only possible choice is (V,V) = (W, W). Hence, the only possible pair of
mutually adjoint bijective realisation is (71, 7T1).

For a(a) = 0, a(b) > 0, We have :
Yu,v €W, wi{Du,v)w = a(b)u(b)v(d) .

)
Yu €W, i Du,u)w = a(b)|u(b)]®> >0.
And, Wo={ueW:u(d) =0
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Classification 1/8

Case 1: a(a)a(b) = 0: For a(a) = a(b) =0, We have D = 0. So, Wy = ker(D) =W,
thus the only possible choice is (V,V) = (W, W). Hence, the only possible pair of
mutually adjoint bijective realisation is (71, 7T1).

For a(a) = 0, a(b) > 0, We have :

Yu,v € W, wi{Du,v)w = a(b)u(b)v(b)
Yu eW, wi({Du,u)w = a(b)|u(b)|2 >0.
And, Wo={ueW:u(b)=0}.

So, pair (W, W)) satisfies condition (V1). Furthermore, (T} |w, T1|wy) = (T1, To) is
trivially a pair of mutually adjoint operators and so it is a pair of mutually adjoint
bijective realisations relative to (T',T"). Since this implies that ker 77 = {0}, (11, 7o) is
the only pair of mutually adjoint bijective realisations relative to (7T, f)
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Classification 1/8

Case 1: a(a)a(b) = 0: For a(a) = a(b) =0, We have D = 0. So, Wy = ker(D) =W,
thus the only possible choice is (V,V) = (W, W). Hence, the only possible pair of
mutually adjoint bijective realisation is (71, 7T1).

For a(a) = 0, a(b) > 0, We have :

Yu,v €W, wi{Du,v)w = a(b)u(b)v(d) .
Yu eW, wi({Du,u)w = a(b)|u(b)|2 >0.
And, Wo={ueW:u(b)=0}.

So, pair (W, W)) satisfies condition (V1). Furthermore, (T} |w, T1|wy) = (T1, To) is
trivially a pair of mutually adjoint operators and so it is a pair of mutually adjoint
bijective realisations relative to (T',T"). Since this implies that ker 77 = {0}, (11, 7o) is
the only pair of mutually adjoint bijective realisations relative to (7T, f)

Similarly, for a(a) = 0, a(b) < 0, we have (V, V) = (Wp, W).

WWo) , (afa) =0Aa(b) > 0)

< >0 afa) <0Aa(d) =
V) = { Wo, W), (a(a) =0Aab) <0) (a

(

\
\
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Classification 2/8

Kernels : If a(a) = a(b) = 0, then ker Ty = ker T) = {0}, i.e. both equations
(ap)’ +Bp=0 and —(ap) +(B+a')p=0

do not have any non-trivial solution in W.
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Classification 2/8

Kernels : If a(a) = a(b) = 0, then ker Ty = ker T) = {0}, i.e. both equations
(ap)’ +Bp=0 and —(ap) +(B+a')p=0

do not have any non-trivial solution in W.
If exactly one of numbers a(a) and a(b) is zero, then from Remark (ii) we have
dim(ker T1) 4+ dim(ker 71) = 1 and so one of the dimensions is 0.
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Classification 2/8

Kernels : If a(a) = a(b) = 0, then ker Ty = ker T) = {0}, i.e. both equations
(ap)’ +Bp=0 and —(ap) +(B+a')p=0

do not have any non-trivial solution in W.

If exactly one of numbers a(a) and a(b) is zero, then from Remark (ii) we have
dim (ker T} ) + dim(ker 77 ) = 1 and so one of the dimensions is 0.

Specifically, if a(a) = 0 and a(b) > 0, then (T1,Tp) is the adjoint pair and so
dim(ker T1) = 0. Hence dim(ker T}) = 1.
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Classification 2/8

Kernels : If a(a) = a(b) = 0, then ker Ty = ker T) = {0}, i.e. both equations
(ap)’ +Bp=0 and —(ap) +(B+a')p=0

do not have any non-trivial solution in W.

If exactly one of numbers a(a) and a(b) is zero, then from Remark (ii) we have
dim (ker T} ) + dim(ker 77 ) = 1 and so one of the dimensions is 0.

Specifically, if a(a) = 0 and a(b) > 0, then (T1,Tp) is the adjoint pair and so
dim(ker T1) = 0. Hence dim(ker T}) = 1.
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Classification 3/8

Case 2: aa)a(b) <0: Wy ={u e W :u(a) = u(b) =0}
For a(a) > 0 and a(b) < 0. Then for any u € W we have

wi{ Du,u)w = a(b)|u(b)]* - a(a)|ua)]* < 0.

Hence, we get (To,T1) = (Ti|we, T1|w) is the only pair of mutually adjoint bijective

realisations relative to (7', 7).

S.K. Soni  (UNIZG)

Classification of classical Friedrichs operators : One dimensional scalar case



Classification 3/8

Case 2: aa)a(b) <0: Wy ={u e W :u(a) = u(b) =0}
For a(a) > 0 and a(b) < 0. Then for any u € W we have

wi{ Du,u)w = a(b)|u(b)]* - a(a)|ua)]* < 0.

Hence, we get (To,T1) = (Ti|we, T1|w) is the only pair of mutually adjoint bijective
realisations relative to (7', 7).
Analogously, for a(a) < 0 and «(b) > 0 we see that (71, 7)) is the only pair of mutually

adjoint bijective realisations relative to (T, 7).
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Classification 3/8

Case 2: aa)a(b) <0: Wy ={u e W :u(a) = u(b) =0}
For a(a) > 0 and a(b) < 0. Then for any u € W we have

wi{ Du,u)w = a(b)|u(b)]* - a(a)|ua)]* < 0.

Hence, we get (To,T1) = (Ti|we, T1|w) is the only pair of mutually adjoint bijective
realisations relative to (7', 7).
Analogously, for a(a) < 0 and «(b) > 0 we see that (71, 7)) is the only pair of mutually

adjoint bijective realisations relative to (T, 7).

Kernels : Although in this case dim(ker T1) + dim(ker 71 ) = 2 , we have only one
bijective realisation. So, for a(a) > 0 we have (dim(kerT1), dim(ker 71)) = (2,0), while
for a(a) < 0 it is (dim(ker T1), dim(ker 71)) = (0, 2).
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Classification 3/8

Case 2: aa)a(b) <0: Wy ={u e W :u(a) = u(b) =0}
For a(a) > 0 and a(b) < 0. Then for any u € W we have

wi{ Du,u)w = a(b)|u(b)]* - a(a)|ua)]* < 0.

Hence, we get (To,T1) = (Ti|we, T1|w) is the only pair of mutually adjoint bijective
realisations relative to (7', 7).
Analogously, for a(a) < 0 and «(b) > 0 we see that (71, 7)) is the only pair of mutually

adjoint bijective realisations relative to (T, 7).

Kernels : Although in this case dim(ker T1) + dim(ker 71 ) = 2 , we have only one
bijective realisation. So, for a(a) > 0 we have (dim(kerT1), dim(ker 71)) = (2,0), while
for a(a) < 0 it is (dim(ker T1), dim(ker 71)) = (0, 2).

Let a(a) < 0. We have o™ ({0}) # 0.

al@);

a(B) > 0f -
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Classification 4/8

Case 3: a(a)a(b) > 0: Wy = {u € W : u(a) = u(b) = 0}, the boundary operator is

wi{ Du,v)w = a(b)u(d)v(b) — a(a)u(a)v(a) , u,veW.

Let us define

V= {u EW :u(b) = Wu(a)} .
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Classification 4/8

Case 3: a(a)a(b) > 0: Wy = {u € W : u(a) = u(b) = 0}, the boundary operator is

wi{ Du,v)w = a(b)u(d)v(b) — a(a)u(a)v(a) , u,veW.

Let us define

V= {u EW :u(b) = %u(a)} .

For an arbitrary v € V and v € W we have

wil Du,v)w = a(b)u()o(®) - ala)u(a)o(a)

= ) (w0 - | 2 uta)y | 20

= a(b)u(d) (v(b) - ZEZ%(@) .

In particular,
(Vu,v € V) w{ Du,viw =0,
implying that (V, V) satisfies condition (V1) and that V C VI,
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Classification 5/8

Now let v € V. Then for any u € YV

a(b)u(b) (v(b) - %v(a)) =0.

Since a(b) # 0 and there exists w € V such that u(b) # 0 (e.g. just consider a linear
function), this implies v(b) = 4/ z((‘;))v(a) ie.veEV.
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Classification 5/8

Now let v € V. Then for any u € YV

a(b)u(b) (v(b) - Z((Z))v(a)) =0.

Since a(b) # 0 and there exists w € V such that u(b) # 0 (e.g. just consider a linear

function), this implies v(b) = z((‘;))v(a) ie.veEV.
Therefore, (T, 7)) is indeed a mutually adjoint pair of bijective realisations relative to
(T,T). It is evident that Wo G V & W, hence there are infinitely many bijective

realisations.
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Classification 5/8

Now let v € V. Then for any u € YV

Since a(b) # 0 and there exists w € V such that u(b) # 0 (e.g. just consider a linear
function), this implies v(b) = 4/ z((‘;))v(a) ie.veEV.
Therefore, (T, 7)) is indeed a mutually adjoint pair of bijective realisations relative to

(T,T). It is evident that W, SV G W, hence there are infinitely many bijective
realisations.

In this case we have dimker 7} = dimker T’ = 1. Implies that the only (non-trivial)
choice is dom B = Z = ker T1 and Z = dom 7. Then there exists (¢ + id) € C\ {0}
such that By = (¢ + id)$ (to get bijective realisations).
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Classification 5/8

Now let v € V. Then for any u € YV

Since a(b) # 0 and there exists w € V such that u(b) # 0 (e.g. just consider a linear
function), this implies v(b) = 4/ z((‘;))v(a) ie.veEV.
Therefore, (T, 7)) is indeed a mutually adjoint pair of bijective realisations relative to

(T,T). It is evident that W, SV G W, hence there are infinitely many bijective
realisations.

In this case we have dimker 7} = dimker T’ = 1. Implies that the only (non-trivial)
choice is dom B = Z = ker T1 and Z = dom 7. Then there exists (¢ + id) € C\ {0}
such that By = (¢ + id)$ (to get bijective realisations).

From the classification theory we have u € W belongs to dom T 4 if and only if

P 7, (T1u) = B(pxu)
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Classification 6/8

Non-orthogonal projections : For any u € W there exist unique u, € V and ux € ker T
such that v = u; + ux. Moreover, uy is of the form C\y ¢, so using

u(a) = ur(a) + Cup(a)
u(b) = ux(b) + Cuip(b)

and u,(b) = 1/‘;((‘3 ur(a). We get
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Classification 6/8

Non-orthogonal projections : For any u € W there exist unique u, € V and ux € ker T
such that v = u; + ux. Moreover, uy is of the form C\y ¢, so using

u(a) = ur(a) + Cup(a)
u(b) = ux(b) + Cuip(b)

and u,(b) = 1/‘;((‘3 ur(a). We get

Thus, the corresponding non-orthogonal projection px : W — ker T is equal to
pr(u) = Cugp.
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Classification 6/8

Non-orthogonal projections : For any u € W there exist unique u, € V and ux € ker T
such that v = u; + ux. Moreover, uy is of the form C\y ¢, so using

u(a) = ur(a) + Cupla)
u(b) = us (b) + Cup(b)

and u,(b) = ‘z((‘;g ur(a). We get

Thus, the corresponding non-orthogonal projection pi : W — ker T is equal to
px(u) = Cuep. Similarly, p; : W — ker T} is given by p;(u) = Cu@, where
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Classification 7/8

Orthogonal projection :

P — (T1u)

ker T
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Classification 7/8

Orthogonal projection :

1 e Lo

Pkerfl (Tlu) - ||¢)”2 <T1u | @)90 - ”@HQW <D 7¢>W§0
1 = = ~
1o (2ORO)P0) - a@u(@)3(@) ¢

So, the equation P 7 (T1u) = B(pxu) becomes,

1
112
Which gives u € W belongs to dom T, 4 if and only if

(a(0)u(0)3() - a(a)u(@)3(@)) ¢ = (c +id)Cugp -

" a(b)f,éz(b)i (c +id) 5 = a(al@i (c+id),/ =4 w(a)
I o) - 2 et I o) - /2@
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Classification 7/8

Orthogonal projection :

P (T1u)

ker T1

(T | @)= Tl ~H2w'<DU,<P>W¢>

So, the equation P 7 (T1u) = B(pxu) becomes,

=5 (a®)u(n)F0) — ala)u(a)F(@) )& = (e + id)Cup

112
Which gives u € W belongs to dom T, 4 if and only if

a(b)@ c+i ala)g(a) (¢ +id) G
(- )~ (- )
w(b) — (b )‘P( a) )‘P(a

Similarly, u € W is in dom T ; if and only if

H@HQ(C o ’Ld) ) u(b) _ (a(a)w(a) _ ||§0|| (C — Zd) Z((Z)) ) u(a) )

2]  a(b)p(b) -
( #(b) — /25 é(a)
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Classification 8/8

So, the set of all pairs of mutually adjoint bijective realisations relative to (7', ZN“) is given
by

B (T ede R (O ULT T}
Kernels : If min, ¢, [a(x)| > 0, then simply

p(z) = a(lm) exp(— / % dm) and o(x) = exp(/ Blz) d:r) .

a(z)
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Classification 8/8

So, the set of all pairs of mutually adjoint bijective realisations relative to (7', ZN“) is given
by

8 {(Tea T e, d e B2\ {0,003} {3, 1)} -

Kernels : If min, ¢, [a(x)| > 0, then simply

p(x) = a(lm) exp(— / % dm) and o(x) = exp(/ % dx) .
If = ({0}) N (a,b) # 0,
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Classification 8/8

So, the set of all pairs of mutually adjoint bijective realisations relative to (7', ZN“) is given
by

B {Tea Toa) e d e RA\{©0,0}} (T T} -

Kernels : If min, ¢, [a(x)| > 0, then simply

p(x) = a(lm) exp(— / % dm) and o(x) = exp(/ % dx) .
If = ({0}) N (a,b) # 0,

Summary :
« at end-points | No. of bij. realisations v, V)
afa) > 0Aad) <0 | Wo, W)
o(a)a(b) <0 ! a(a) S0 Aa(d) >0 | (W, W)
a(a)a(b) >0 00 [3] (see [1] and [2] )
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Example 1 : Take the interval Q := (0, 2) and coefficients a(x) =1 —x and S = 1. Then

To=((1-2)p) +¢
and _

To=—((1-2)e) .
Here 2RB8 +a’ =2 —1=1> 0 on (0, 2), meaning that (7, f) is a pair of abstract
Friedrichs operators.
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Example 1 : Take the interval Q := (0, 2) and coefficients a(x) =1 —x and S = 1. Then

To=((1-2)p) +¢
and _
To=—((1-2)e) .
Here 2RB8 +a’ =2 —1=1> 0 on (0, 2), meaning that (7, f) is a pair of abstract
Friedrichs operators.
Solving on (0,1) and (1,2) separately we get that for ¢ € ker T} necessarily

for some constants ¢1,c2 € C.
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Example 1 : Take the interval Q := (0, 2) and coefficients a(x) =1 —x and S = 1. Then
To=((1-2)p) +¢
and _
To=—((1-2)e) .
Here 2RB8 +a’ =2 —1=1> 0 on (0, 2), meaning that (7, f) is a pair of abstract
Friedrichs operators.
Solving on (0,1) and (1,2) separately we get that for ¢ € ker T} necessarily

_f a , in(0,1)
T e , in(1,2),

for some constants ¢1,c2 € C. We have ¢ € W. Indeed, it is evident that ¢ € L2 (0,2),
while for ¢ € CZ°(0,2) we have

/0 (1 - 2l (o) do = / (1 - 2l () do + / (1 - 2l () do
— /01(1 o) (2) do + e /12(1 — oW (2) do
= /01 P(x)dr + c2 /12 Y(x)de = /02 o(z)Y(z) dx .
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This means ((1 — z)p)’ = —p € L*(0,2), thus ¢ € W. Therefore, dimker Ty = 2 (since
we have two parameters in the definition of ).
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This means ((1 — z)p)’ = —p € L*(0,2), thus ¢ € W. Therefore, dimker Ty = 2 (since
we have two parameters in the definition of ).
On the other hand, @ € ker T} implies

& ze(0)
@(I){ 2 z € (1,2)

for some constants d;,d2 € C.
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This means ((1 — z)p)’ = —p € L*(0,2), thus ¢ € W. Therefore, dimker Ty = 2 (since
we have two parameters in the definition of ).
On the other hand, @ € ker T} implies

for some constants d;,d2 € C. B B
But ¢ € L?(0,2) if and only if dy = d2 = 0. Hence, ker Ty = {0} and dimker T} = 0,
justifying the results obtained in Case 2.
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This means ((1 — z)p)’ = —p € L*(0,2), thus ¢ € W. Therefore, dimker Ty = 2 (since
we have two parameters in the definition of ).
On the other hand, @ € ker T} implies

for some constants d;,d2 € C. B B
But ¢ € L?(0,2) if and only if dy = d2 = 0. Hence, ker Ty = {0} and dimker T} = 0,
justifying the results obtained in Case 2.

It is interesting to note that for ¢; # c2 we have ¢’ ¢ L?(0,2), because ¢’ = (c2 — ¢1)d1
(here &1 is the Dirac measure at 1) and so ¢ ¢ H'(0,2). Thus, H1(0,2) Sw.
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This means ((1 — z)p)’ = —p € L*(0,2), thus ¢ € W. Therefore, dimker Ty = 2 (since
we have two parameters in the definition of ).
On the other hand, @ € ker T} implies

& ze(0)

for some constants d;,d2 € C. B B
But ¢ € L?(0,2) if and only if dy = d2 = 0. Hence, ker Ty = {0} and dimker T} = 0,
justifying the results obtained in Case 2.

It is interesting to note that for ¢; # c2 we have ¢’ ¢ L?(0,2), because ¢’ = (c2 — ¢1)d1
(here &1 is the Dirac measure at 1) and so ¢ ¢ H*(0,2). Thus, H'(0,2) Sw.

Moreover, ¢ € HL([0,2] \ {1}) for any choice of parameters d1,dz. Indeed, for any
subinterval [c,d] C [0,2] \ {1} we have @|(..q) € H'(c,d). Since ¢ & W this shows that
W is indeed a proper subspace of Hy,.([0,2]\ {1}), i.e. W S H}\,.([0,2] \ {1}).
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And...

...thank you for your attention :)
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