Classification of classical Friedrichs operators: One dimensional scalar

 caseSandeep Kumar Soni
Department of Mathematics, Faculty of Science, University of Zagreb

PMF-MO

Seminar for differential equations and numerical analysis
Zagreb, $7^{\text {th }}$ February 2022

Joint work with Marko Erceg

Classical Friedrichs operators

Assumptions:

$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on Ω):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} \tag{F2}
\end{equation*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B} \mathbf{u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

Classical Friedrichs operators

Assumptions:
$d, r \in \mathbb{N}, \Omega \subseteq \mathbb{R}^{d}$ open and bounded with Lipschitz boundary;
$\mathbf{A}_{k} \in W^{1, \infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right), k \in\{1, \ldots, d\}$, and $\mathbf{B} \in L^{\infty}\left(\Omega ; \mathrm{M}_{r}(\mathbb{C})\right)$ satisfying (a.e. on Ω):
(F1)

$$
\mathbf{A}_{k}=\mathbf{A}_{k}^{*}
$$

$$
\begin{equation*}
\left(\exists \mu_{0}>0\right) \quad \mathbf{B}+\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k} \geqslant 2 \mu_{0} \mathbf{I} \tag{F2}
\end{equation*}
$$

Define $\mathcal{L}, \widetilde{\mathcal{L}}: L^{2}(\Omega)^{r} \rightarrow \mathcal{D}^{\prime}(\Omega)^{r}$ by

$$
\mathcal{L} \mathbf{u}:=\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\mathbf{B u}, \quad \widetilde{\mathcal{L}} \mathbf{u}:=-\sum_{k=1}^{d} \partial_{k}\left(\mathbf{A}_{k} \mathbf{u}\right)+\left(\mathbf{B}^{*}+\sum_{k=1}^{d} \partial_{k} \mathbf{A}_{k}\right) \mathbf{u} .
$$

Aim: impose boundary conditions such that for any $\mathrm{f} \in L^{2}(\Omega)^{r}$ we have a unique solution of $\mathcal{L} \mathrm{u}=\mathrm{f}$.
K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure Appl. Math. 11 (1958) 333-418.

Abstract Friedrichs operators

$(\mathcal{H},\langle\cdot \mid \cdot\rangle)$ complex Hilbert space $\left(\mathcal{H}^{\prime} \equiv \mathcal{H}\right),\|\cdot\|:=\sqrt{\langle\cdot \mid \cdot\rangle}$
$\mathcal{D} \subseteq \mathcal{H}$ dense subspace

Definition

Let $T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}$. The pair (T, \widetilde{T}) is called a joint pair of abstract Friedrichs operators if the following holds:

$$
\begin{equation*}
(\forall \varphi, \psi \in \mathcal{D}) \quad\langle T \varphi \mid \psi\rangle=\langle\varphi \mid \widetilde{T} \psi\rangle ; \tag{T1}
\end{equation*}
$$

$$
\begin{align*}
(\exists c>0)(\forall \varphi \in \mathcal{D}) & \|(T+\widetilde{T}) \varphi\| \leqslant c\|\varphi\| ; \tag{T2}\\
\left(\exists \mu_{0}>0\right)(\forall \varphi \in \mathcal{D}) & \langle(T+\widetilde{T}) \varphi \mid \varphi\rangle \geqslant \mu_{0}\|\varphi\|^{2} . \tag{T3}
\end{align*}
$$

A. Ern, J.L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. 32 (2007) 317-341.
专
N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems, Comm. Partial Diff. Eq. 35 (2010) 1690-1715.

Characterisation of joint pair of abstract Friedrichs operators

$T_{0}:=\bar{T}, \widetilde{T}_{0}:=\widetilde{\bar{T}}$ on $\mathcal{W}_{0}($ closure of $\mathcal{D})$ and $T_{1}:=\widetilde{T}^{*}, \widetilde{T}_{1}:=T^{*}$ on \mathcal{W} (the graph space).
Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle
$$

Characterisation of joint pair of abstract Friedrichs operators

$T_{0}:=\bar{T}, \widetilde{T}_{0}:=\widetilde{\bar{T}}$ on \mathcal{W}_{0} (closure of \mathcal{D}) and $T_{1}:=\widetilde{T}^{*}, \widetilde{T}_{1}:=T^{*}$ on \mathcal{W} (the graph space).
Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle .
$$

$(\mathcal{W},[\cdot \mid \cdot])$ is an indefinite inner product space. $\quad(\exists 0 \neq u \in \mathcal{W}, \quad[u \mid u]=0)$

Characterisation of joint pair of abstract Friedrichs operators

$T_{0}:=\bar{T}, \widetilde{T}_{0}:=\widetilde{\bar{T}}$ on \mathcal{W}_{0} (closure of \mathcal{D}) and $T_{1}:=\widetilde{T}^{*}, \widetilde{T}_{1}:=T^{*}$ on \mathcal{W} (the graph space).
Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{w}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle .
$$

$(\mathcal{W},[\cdot \mid \cdot])$ is an indefinite inner product space. $\quad(\exists 0 \neq u \in \mathcal{W}, \quad[u \mid u]=0)$
For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:
(V1)

$$
\begin{array}{ll}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0,} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0 .} \\
\mathcal{V}^{[\perp]}=\widetilde{\mathcal{V}}, \widetilde{\mathcal{V}}^{[\perp]}=\mathcal{V} .
\end{array}
$$

Characterisation of joint pair of abstract Friedrichs operators

$T_{0}:=\bar{T}, \widetilde{T}_{0}:=\widetilde{\bar{T}}$ on $\mathcal{W}_{0}($ closure of $\mathcal{D})$ and $T_{1}:=\widetilde{T}^{*}, \widetilde{T}_{1}:=T^{*}$ on \mathcal{W} (the graph space).
Boundary map (form): $D: \mathcal{W} \rightarrow \mathcal{W}^{\prime}$,

$$
[u \mid v]:=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}:=\left\langle T_{1} u \mid v\right\rangle-\left\langle u \mid \widetilde{T}_{1} v\right\rangle
$$

$(\mathcal{W},[\cdot \mid \cdot])$ is an indefinite inner product space. $\quad(\exists 0 \neq u \in \mathcal{W}, \quad[u \mid u]=0)$
For $\mathcal{V}, \widetilde{\mathcal{V}} \subseteq \mathcal{W}$ we introduce two conditions:

$$
\begin{array}{lr}
(\forall u \in \mathcal{V}) & {[u \mid u] \geqslant 0,} \\
(\forall v \in \widetilde{\mathcal{V}}) & {[v \mid v] \leqslant 0 .} \\
\mathcal{V}^{[\perp]}=\widetilde{\mathcal{V}}, \widetilde{\mathcal{V}}^{[\nu]}=\mathcal{V} . \tag{V2}
\end{array}
$$

Well-posedness:

Theorem (Ern, Guermond, Caplain, 2007)

$(T 1)-(T 3)+(V 1)-(V 2) \Longrightarrow T_{1}\left|\mathcal{V}, \widetilde{T}_{1}\right|_{\tilde{\mathcal{V}}}$ bijective realisations .

Existance, multiplicity and classification

We seek for bijective closed operators $S \equiv \widetilde{T}^{*} \mid \mathcal{V}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. We call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations relative to (T, \widetilde{T}).

Existance, multiplicity and classification

We seek for bijective closed operators $\left.S \equiv \widetilde{T}^{*}\right|_{\mathcal{V}}$ such that

$$
\bar{T} \subseteq S \subseteq \widetilde{T}^{*}
$$

and thus also S^{*} is bijective and $\overline{\widetilde{T}} \subseteq S^{*} \subseteq T^{*}$. We call $\left(S, S^{*}\right)$ an adjoint pair of bijective realisations relative to (T, \widetilde{T}).

Theorem (Antonić, Erceg, Michelangeli, 2017)

Let (T, \widetilde{T}) satisfies (T1)-(T3).
(i) There exists an adjoint pair of bijective realisations with signed boundary map relative to (T, \widetilde{T}).
(ii)

$$
\begin{aligned}
& \operatorname{ker} \widetilde{T}^{*} \neq\{0\} \& \operatorname{ker} T^{*} \neq\{0\} \Longrightarrow \begin{array}{l}
\text { uncountably many adjoint pairs of bijective } \\
\text { realisations with signed boundary map }
\end{array} \\
& \operatorname{ker} \widetilde{T}^{*}=\{0\} \text { or } \operatorname{ker} T^{*}=\{0\} \Longrightarrow \begin{array}{l}
\text { only one adjoint pair of bijective realisations } \\
\text { with signed boundary map }
\end{array}
\end{aligned}
$$

Classification $1 / 2$

Let $\left(T_{0}, \widetilde{T}_{0}\right)$ and $\left(T_{1}, \widetilde{T}_{1}\right)$ be two pairs of mutually adjoint, closed and densely defined operators on \mathcal{H} satisfying

$$
T_{0} \subseteq\left(\widetilde{T}_{0}\right)^{*}=T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq\left(T_{0}\right)^{*}=\widetilde{T}_{1}
$$

which admit a pair $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ of reference operators that are closed, satisfy $T_{0} \subseteq T_{\mathrm{r}} \subseteq T_{1}$, equivalently $\widetilde{T}_{0} \subseteq T_{\mathrm{r}}^{*} \subseteq \widetilde{T}_{1}$, and are invertible with everywhere defined bounded inverses T_{r}^{-1} and $\left(T_{\mathrm{r}}^{*}\right)^{-1}$.

Classification $1 / 2$

Let $\left(T_{0}, \widetilde{T}_{0}\right)$ and $\left(T_{1}, \widetilde{T}_{1}\right)$ be two pairs of mutually adjoint, closed and densely defined operators on \mathcal{H} satisfying

$$
T_{0} \subseteq\left(\widetilde{T}_{0}\right)^{*}=T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq\left(T_{0}\right)^{*}=\widetilde{T}_{1}
$$

which admit a pair $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ of reference operators that are closed, satisfy $T_{0} \subseteq T_{\mathrm{r}} \subseteq T_{1}$, equivalently $\widetilde{T}_{0} \subseteq T_{\mathrm{r}}^{*} \subseteq \widetilde{T}_{1}$, and are invertible with everywhere defined bounded inverses T_{r}^{-1} and $\left(T_{\mathrm{r}}^{*}\right)^{-1}$.
Then
(i)

$$
\operatorname{dom} T_{1}=\operatorname{dom} T_{\mathrm{r}} \dot{+} \operatorname{ker} T_{1} \quad \text { and } \quad \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{\mathrm{r}}^{*} \dot{+} \operatorname{ker} \widetilde{T}_{1}
$$

Classification $1 / 2$

Let $\left(T_{0}, \widetilde{T}_{0}\right)$ and $\left(T_{1}, \widetilde{T}_{1}\right)$ be two pairs of mutually adjoint, closed and densely defined operators on \mathcal{H} satisfying

$$
T_{0} \subseteq\left(\widetilde{T}_{0}\right)^{*}=T_{1} \quad \text { and } \quad \widetilde{T}_{0} \subseteq\left(T_{0}\right)^{*}=\widetilde{T}_{1}
$$

which admit a pair $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ of reference operators that are closed, satisfy $T_{0} \subseteq T_{\mathrm{r}} \subseteq T_{1}$, equivalently $\widetilde{T}_{0} \subseteq T_{\mathrm{r}}^{*} \subseteq \widetilde{T}_{1}$, and are invertible with everywhere defined bounded inverses T_{r}^{-1} and $\left(T_{\mathrm{r}}^{*}\right)^{-1}$.
Then
(i)

$$
\operatorname{dom} T_{1}=\operatorname{dom} T_{\mathrm{r}}+\operatorname{ker} T_{1} \quad \text { and } \quad \operatorname{dom} \widetilde{T}_{1}=\operatorname{dom} T_{\mathrm{r}}^{*}+\operatorname{ker} \widetilde{T}_{1}
$$

The corresponding (non-orthogonal) projections

$$
\begin{array}{ll}
p_{\mathrm{r}}: \operatorname{dom} T_{1} \rightarrow \operatorname{dom} T_{\mathrm{r}}, & p_{\tilde{\mathrm{r}}}: \operatorname{dom} \widetilde{T}_{1} \rightarrow \operatorname{dom} T_{\mathrm{r}}^{*}, \\
p_{\mathrm{k}}: \operatorname{dom} T_{1} \rightarrow \operatorname{ker} T_{1}, & p_{\tilde{\mathrm{k}}}: \operatorname{dom} \widetilde{T}_{1} \rightarrow \operatorname{ker} \widetilde{T}_{1},
\end{array}
$$

satisfying

$$
\begin{array}{ll}
p_{\mathrm{r}}=T_{\mathrm{r}}^{-1} T_{1}, & p_{\tilde{\mathrm{r}}}=\left(T_{\mathrm{r}}^{*}\right)^{-1} \widetilde{T}_{1} \\
p_{\mathrm{k}}=\mathbb{1}-p_{\mathrm{r}}, & p_{\tilde{\mathrm{k}}}=\mathbb{1}-p_{\tilde{\mathrm{r}}}
\end{array}
$$

and being continuous with respect to the graph norms.

Classification 2/2

(ii)

$$
\left\{\left(A, A^{*}\right): \widetilde{T}_{0} \subseteq A \subseteq T_{1}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\left(B, B^{*}\right): B: \mathcal{Z} \rightarrow \widetilde{\mathcal{Z}} \text { closed densely defined }\right\}
$$

where $\mathcal{Z}, \widetilde{\mathcal{Z}}$ run through closed subspaces of $\operatorname{ker} T_{1}$ and $\operatorname{ker} \widetilde{T}_{1}$ respectively.

Classification 2/2

(ii)

$$
\left\{\left(A, A^{*}\right): \widetilde{T}_{0} \subseteq A \subseteq T_{1}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\left(B, B^{*}\right): B: \mathcal{Z} \rightarrow \widetilde{\mathcal{Z}} \text { closed densely defined }\right\}
$$

where $\mathcal{Z}, \widetilde{\mathcal{Z}}$ run through closed subspaces of $\operatorname{ker} T_{1}$ and $\operatorname{ker} \widetilde{T}_{1}$ respectively. The correspondence is given by

$$
\begin{aligned}
\operatorname{dom} A & =\left\{u \in \operatorname{dom} T_{1}: p_{\mathrm{k}} u \in \operatorname{dom} B, P_{\tilde{\mathcal{Z}}}\left(T_{1} u\right)=B\left(p_{\mathrm{k}} u\right)\right\}, \\
\operatorname{dom} A^{*} & =\left\{v \in \operatorname{dom} \widetilde{T}_{1}: p_{\overline{\mathrm{k}}} v \in \operatorname{dom} B^{*}, P_{\mathcal{Z}}\left(\widetilde{T}_{1} v\right)=B^{*}\left(p_{\overline{\mathrm{k}}} v\right)\right\} .
\end{aligned}
$$

Classification 2/2

(ii)

$$
\left\{\left(A, A^{*}\right): \widetilde{T}_{0} \subseteq A \subseteq T_{1}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\left(B, B^{*}\right): B: \mathcal{Z} \rightarrow \widetilde{\mathcal{Z}} \text { closed densely defined }\right\}
$$

where $\mathcal{Z}, \widetilde{\mathcal{Z}}$ run through closed subspaces of $\operatorname{ker} T_{1}$ and $\operatorname{ker} \widetilde{T}_{1}$ respectively. The correspondence is given by

$$
\begin{aligned}
\operatorname{dom} A & =\left\{u \in \operatorname{dom} T_{1}: p_{\mathrm{k}} u \in \operatorname{dom} B, P_{\tilde{\mathcal{Z}}}\left(T_{1} u\right)=B\left(p_{\mathrm{k}} u\right)\right\} \\
\operatorname{dom} A^{*} & =\left\{v \in \operatorname{dom} \widetilde{T}_{1}: p_{\tilde{\mathrm{k}}} v \in \operatorname{dom} B^{*}, P_{\mathcal{Z}}\left(\widetilde{T}_{1} v\right)=B^{*}\left(p_{\tilde{\mathrm{k}}} v\right)\right\}
\end{aligned}
$$

Conversely, by

$$
\begin{aligned}
\operatorname{dom} B & =p_{\mathrm{k}} \operatorname{dom} A, & \mathcal{Z} & =\overline{\operatorname{dom} B}, & B\left(p_{\mathrm{k}} u\right) & =P_{\widetilde{\mathcal{Z}}}\left(T_{1} u\right) \\
\operatorname{dom} B^{*} & =p_{\tilde{\mathrm{k}}} \operatorname{dom} A^{*}, & \widetilde{\mathcal{Z}} & =\overline{\operatorname{dom} B^{*}}, & B^{*}\left(p_{\tilde{\mathrm{k}}} v\right) & =P_{\mathcal{Z}}\left(\widetilde{T}_{1} v\right)
\end{aligned}
$$

where $P_{\mathcal{Z}}$ and $P_{\tilde{\mathcal{Z}}}$ are the orthogonal projections from \mathcal{H} onto \mathcal{Z} and $\widetilde{\mathcal{Z}}$.

Classification 2/2

(ii)

$$
\left\{\left(A, A^{*}\right): \widetilde{T}_{0} \subseteq A \subseteq T_{1}\right\} \stackrel{1: 1}{\longleftrightarrow}\left\{\left(B, B^{*}\right): B: \mathcal{Z} \rightarrow \widetilde{\mathcal{Z}} \text { closed densely defined }\right\}
$$

where $\mathcal{Z}, \widetilde{\mathcal{Z}}$ run through closed subspaces of $\operatorname{ker} T_{1}$ and $\operatorname{ker} \widetilde{T}_{1}$ respectively. The correspondence is given by

$$
\begin{aligned}
\operatorname{dom} A & =\left\{u \in \operatorname{dom} T_{1}: p_{\mathrm{k}} u \in \operatorname{dom} B, P_{\widetilde{\mathcal{Z}}}\left(T_{1} u\right)=B\left(p_{\mathrm{k}} u\right)\right\} \\
\operatorname{dom} A^{*} & =\left\{v \in \operatorname{dom} \widetilde{T}_{1}: p_{\tilde{\mathrm{k}}} v \in \operatorname{dom} B^{*}, P_{\mathcal{Z}}\left(\widetilde{T}_{1} v\right)=B^{*}\left(p_{\tilde{\mathrm{k}}} v\right)\right\}
\end{aligned}
$$

Conversely, by

$$
\begin{aligned}
\operatorname{dom} B & =p_{\mathrm{k}} \operatorname{dom} A, & \widetilde{\mathcal{Z}} & =\overline{\operatorname{dom} B}, & B\left(p_{\mathrm{k}} u\right) & =P_{\widetilde{\mathcal{Z}}}\left(T_{1} u\right), \\
\operatorname{dom} B^{*} & =p_{\mathrm{k}} \operatorname{dom} A^{*}, & \widetilde{\mathcal{Z}} & =\overline{\operatorname{dom} B^{*}}, & B^{*}\left(p_{\tilde{\mathrm{k}}} v\right) & =P_{\mathcal{Z}}\left(\widetilde{T}_{1} v\right),
\end{aligned}
$$

where $P_{\mathcal{Z}}$ and $P_{\tilde{\mathcal{Z}}}$ are the orthogonal projections from \mathcal{H} onto \mathcal{Z} and $\widetilde{\mathcal{Z}}$.
G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425-513.
R- Antonić, M.Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.

One-dimensional scalar case: Preliminaries $1 / 5$

Theorem
$\left(T_{0}, \widetilde{T}_{0}\right)$ is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1} .
$$

One-dimensional scalar case: Preliminaries $1 / 5$

Theorem

$\left(T_{0}, \widetilde{T}_{0}\right)$ is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}
$$

$\Omega=(a, b), a<b, \mathcal{D}=C_{c}^{\infty}(a, b)$ and $\mathcal{H}=L^{2}(a, b) . T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}:$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ and for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.

One-dimensional scalar case: Preliminaries $1 / 5$

Theorem

$\left(T_{0}, \widetilde{T}_{0}\right)$ is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}
$$

$\Omega=(a, b), a<b, \mathcal{D}=C_{c}^{\infty}(a, b)$ and $\mathcal{H}=L^{2}(a, b) . T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}:$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ and for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space :

$$
\mathcal{W}=\left\{u \in \mathcal{H}:(\alpha u)^{\prime} \in \mathcal{H}\right\}, \quad\|u\| \mathcal{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\|
$$

One-dimensional scalar case: Preliminaries $1 / 5$

Theorem

$\left(T_{0}, \widetilde{T}_{0}\right)$ is a joint pair of closed abstract Friedrichs operators then

$$
\mathcal{W}=\mathcal{W}_{0} \dot{+} \operatorname{ker} T_{1} \dot{+} \operatorname{ker} \widetilde{T}_{1}
$$

$\Omega=(a, b), a<b, \mathcal{D}=C_{c}^{\infty}(a, b)$ and $\mathcal{H}=L^{2}(a, b) . T, \widetilde{T}: \mathcal{D} \rightarrow \mathcal{H}:$

$$
T \varphi:=(\alpha \varphi)^{\prime}+\beta \varphi \quad \text { and } \quad \widetilde{T} \varphi:=-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi
$$

Here $\alpha \in W^{1, \infty}((a, b) ; \mathbb{R}), \beta \in L^{\infty}((a, b) ; \mathbb{C})$ and for some $\mu_{0}>0,2 \Re \beta+\alpha^{\prime} \geq 2 \mu_{0}>0$.
The graph space :

$$
\mathcal{W}=\left\{u \in \mathcal{H}:(\alpha u)^{\prime} \in \mathcal{H}\right\}, \quad\|u\| \mathcal{W}:=\|u\|+\left\|(\alpha u)^{\prime}\right\|
$$

Equivalently ,

$$
u \in \mathcal{W} \Longleftrightarrow \alpha u \in H^{1}(a, b)
$$

So, by Sobolev embedding $\alpha u \in C(a, b)$. Implies the evaluation $(\alpha u)(x)$ is well defined. However, u is not necessarily continuous so $\alpha(x) u(x)$ is not meaningful.

One-dimensional scalar case: Preliminaries 2/5

Lemma

Let $I:=[a, b] \backslash \alpha^{-1}(\{0\})$. Then $\mathcal{W} \subseteq H_{\mathrm{loc}}^{1}(I)$, i.e. for any $u \in \mathcal{W}$ and $[c, d] \subseteq I, c<d$, we have $\left.u\right|_{[c, d]} \in H^{1}(c, d)$.

One-dimensional scalar case: Preliminaries 2/5

Lemma

Let $I:=[a, b] \backslash \alpha^{-1}(\{0\})$. Then $\mathcal{W} \subseteq H_{\mathrm{loc}}^{1}(I)$, i.e. for any $u \in \mathcal{W}$ and $[c, d] \subseteq I, c<d$, we have $\left.u\right|_{[c, d]} \in H^{1}(c, d)$.

Proof : Since α is continuous, I is relatively open in $[a, b]$. Let us take $[c, d] \subseteq I, c<d$, define $\alpha_{0}:=\min _{x \in[c, d]}|\alpha(x)|$. Let $u \in C_{c}^{\infty}(\mathbb{R})$, then

$$
\begin{aligned}
\left\|u^{\prime}\right\|_{L^{2}(c, d)} & =\left\|\frac{1}{\alpha} \alpha u^{\prime}\right\|_{L^{2}(c, d)} \leq \frac{1}{\alpha_{0}}\left\|\alpha u^{\prime}\right\|_{L^{2}(c, d)} \\
& =\frac{1}{\alpha_{0}}\left\|(\alpha u)^{\prime}-\alpha^{\prime} u\right\|_{L^{2}(c, d)} \leq \frac{1}{\alpha_{0}}\left(\left\|(\alpha u)^{\prime}\right\|_{L^{2}(c, d)}+\left\|\alpha^{\prime} u\right\|_{L^{2}(c, d)}\right) \\
& \leq \frac{1}{\alpha_{0}}\left(\left\|(\alpha u)^{\prime}\right\|+\left\|\alpha^{\prime}\right\|_{L^{\infty}(a, b)}\|u\|\right) \leq \frac{1+\|\alpha\|_{W^{1, \infty}(a, b)}}{\alpha_{0}}\|u\|_{\mathcal{W}} .
\end{aligned}
$$

By density of $C_{c}^{\infty}(\mathbb{R})$ in \mathcal{W} we get $\left.u\right|_{[c, d]} \in H^{1}(c, d)$ and there exists $C>0$ (dependent on c, d) :

$$
\|u\|_{H^{1}(c, d)} \leq C\|u\|_{\mathcal{W}}, \quad u \in \mathcal{W}
$$

One-dimensional scalar case: Preliminaries 3/5

The boundary operator can be written explicitly as

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathcal{W},
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b] .\right.
$$

One-dimensional scalar case: Preliminaries 3/5

The boundary operator can be written explicitly as

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathcal{W},
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b]\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} satisfies $\mathcal{W}_{0}=\operatorname{cl}_{\mathcal{W}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$
\mathcal{W}_{0}=\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\}
$$

One-dimensional scalar case: Preliminaries $3 / 5$

The boundary operator can be written explicitly as

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathcal{W}
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b]\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} satisfies $\mathcal{W}_{0}=\operatorname{cl}_{\mathcal{W}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$
\mathcal{W}_{0}=\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\}
$$

Proof : Since ker $D=\mathcal{W}_{0}$, so it is sufficient to prove that this set is $\operatorname{ker} D$. Let $u \in \mathcal{W}$ such that $(\alpha u)(a)=(\alpha u)(b)=0$, then

$$
\forall v \in \mathcal{W}, \quad \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a)=0-0=0
$$

So, $\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\} \subseteq \operatorname{ker} D$.

One-dimensional scalar case: Preliminaries $3 / 5$

The boundary operator can be written explicitly as

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a), \quad u, v \in \mathcal{W}
$$

where we define

$$
(\alpha u \bar{v})(x):=\left\{\begin{array}{ll}
0 & , \quad \alpha(x)=0 \\
\alpha(x) u(x) \overline{v(x)} & , \quad \alpha(x) \neq 0
\end{array} \quad, \quad x \in[a, b]\right.
$$

The domain of the closures T_{0} and \widetilde{T}_{0} satisfies $\mathcal{W}_{0}=\operatorname{cl}_{\mathcal{W}} C_{c}^{\infty}(\mathbb{R})$, is characterised as

Lemma

$$
\mathcal{W}_{0}=\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\}
$$

Proof : Since $\operatorname{ker} D=\mathcal{W}_{0}$, so it is sufficient to prove that this set is ker D. Let $u \in \mathcal{W}$ such that $(\alpha u)(a)=(\alpha u)(b)=0$, then

$$
\forall v \in \mathcal{W}, \quad \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a)=0-0=0
$$

So, $\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\} \subseteq \operatorname{ker} D$. Conversely, let $u \in \operatorname{ker} D \subset \mathcal{W}$ then for any $v \in H^{1}(a, b) \subseteq \mathcal{W}$,

$$
0=\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=(\alpha u \bar{v})(b)-(\alpha u \bar{v})(a)=(\alpha u)(b) \overline{v(b)}-(\alpha u)(a) \overline{v(a)}
$$

Here, v was continuous (Sobolev embedding). So, $(\alpha u)(b)=0,(\alpha u)(a)=0$. Hence, $\operatorname{ker} D \subseteq\{u \in \mathcal{W}:(\alpha u)(a)=(\alpha u)(b)=0\}$.

One-dimensional scalar case: Preliminaries 4/5

Lemma

$$
\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=\left\{\begin{array}{lll}
2 & , \quad \alpha(a) \alpha(b) \neq 0 \\
1 & , \quad(\alpha(a)=0 \wedge \alpha(b) \neq 0) \vee(\alpha(a) \neq 0 \wedge \alpha(b)=0) \\
0 & , \quad \alpha(a)=\alpha(b)=0
\end{array}\right.
$$

Proof : If $\alpha(a) \alpha(b) \neq 0$, then choose $\varphi, \psi \in \mathcal{W}$, such that $\varphi(a)=1, \varphi(b)=0$ and $\psi(a)=0, \psi(b)=1$. Define $\hat{\varphi}:=\varphi+\mathcal{W}_{0}$ and $\hat{\psi}:=\psi+\mathcal{W}_{0}$. Then $E:=\{\hat{\varphi}, \hat{\psi}\}$ is a basis of $\mathcal{W} / \mathcal{W}_{0}$.
If E were linearly dependent then for some non-zero scalar r we would have $\hat{\psi}=r \hat{\varphi}$, implying $\hat{\psi}-r \hat{\varphi}=\hat{0}=\mathcal{W}_{0}$. Hence, $\psi-r \varphi \in \mathcal{W}_{0}$, so

$$
(\alpha(\psi-r \varphi))(a)=(\alpha(\psi-r \varphi))(b)=0
$$

But,

$$
(\alpha(\psi-r \varphi))(a)=\alpha(a) \psi(a)-r \alpha(a) \varphi(a)=0-r \alpha(a)=-r \alpha(a) \neq 0
$$

which is a contradiction. Hence, E is linearly independent.

One-dimensional scalar case: Preliminaries 4/5

Lemma

$$
\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=\left\{\begin{array}{lll}
2 & , \quad \alpha(a) \alpha(b) \neq 0 \\
1 & , \quad(\alpha(a)=0 \wedge \alpha(b) \neq 0) \vee(\alpha(a) \neq 0 \wedge \alpha(b)=0) \\
0 & , \quad \alpha(a)=\alpha(b)=0
\end{array}\right.
$$

Proof : If $\alpha(a) \alpha(b) \neq 0$, then choose $\varphi, \psi \in \mathcal{W}$, such that $\varphi(a)=1, \varphi(b)=0$ and $\psi(a)=0, \psi(b)=1$. Define $\hat{\varphi}:=\varphi+\mathcal{W}_{0}$ and $\hat{\psi}:=\psi+\mathcal{W}_{0}$. Then $E:=\{\hat{\varphi}, \hat{\psi}\}$ is a basis of $\mathcal{W} / \mathcal{W}_{0}$.
If E were linearly dependent then for some non-zero scalar r we would have $\hat{\psi}=r \hat{\varphi}$, implying $\hat{\psi}-r \hat{\varphi}=\hat{0}=\mathcal{W}_{0}$. Hence, $\psi-r \varphi \in \mathcal{W}_{0}$, so

$$
(\alpha(\psi-r \varphi))(a)=(\alpha(\psi-r \varphi))(b)=0
$$

But,

$$
(\alpha(\psi-r \varphi))(a)=\alpha(a) \psi(a)-r \alpha(a) \varphi(a)=0-r \alpha(a)=-r \alpha(a) \neq 0
$$

which is a contradiction. Hence, E is linearly independent. Now let $u \in \mathcal{W}$, then

$$
u-u(a) \varphi-u(b) \psi \in \mathcal{W}_{0}
$$

means E spans $\mathcal{W} / \mathcal{W}_{0}$. So, E is a basis of $\mathcal{W} / \mathcal{W}_{0}$, hence $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=2$.

One-dimensional scalar case: Preliminaries $5 / 5$

If $\alpha(a)=0$ and $\alpha(b) \neq 0$, then we take $\varphi \in \mathcal{W}$ such that $\varphi(b)=1$. Since,

$$
u \in \mathcal{W} \Longrightarrow u-u(b) \varphi \in \mathcal{W}_{0}
$$

we get $\operatorname{span}\left\{\varphi+\mathcal{W}_{0}\right\}=\mathcal{W} / \mathcal{W}_{0}$. Hence, $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
Similarly, if $\alpha(a) \neq 0$ and $\alpha(b)=0, \operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.

One-dimensional scalar case: Preliminaries 5/5

If $\alpha(a)=0$ and $\alpha(b) \neq 0$, then we take $\varphi \in \mathcal{W}$ such that $\varphi(b)=1$. Since,

$$
u \in \mathcal{W} \Longrightarrow u-u(b) \varphi \in \mathcal{W}_{0}
$$

we get $\operatorname{span}\left\{\varphi+\mathcal{W}_{0}\right\}=\mathcal{W} / \mathcal{W}_{0}$. Hence, $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
Similarly, if $\alpha(a) \neq 0$ and $\alpha(b)=0, \operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$. If $\alpha(a)=\alpha(b)=0$, then $D=0$, hence $\mathcal{W}=\operatorname{ker}(D)=\mathcal{W}_{0}$, implying $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=0$.

One-dimensional scalar case: Preliminaries 5/5

If $\alpha(a)=0$ and $\alpha(b) \neq 0$, then we take $\varphi \in \mathcal{W}$ such that $\varphi(b)=1$. Since,

$$
u \in \mathcal{W} \Longrightarrow u-u(b) \varphi \in \mathcal{W}_{0}
$$

we get $\operatorname{span}\left\{\varphi+\mathcal{W}_{0}\right\}=\mathcal{W} / \mathcal{W}_{0}$. Hence, $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
Similarly, if $\alpha(a) \neq 0$ and $\alpha(b)=0, \operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
If $\alpha(a)=\alpha(b)=0$, then $D=0$, hence $\mathcal{W}=\operatorname{ker}(D)=\mathcal{W}_{0}$, implying $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=0$.
Remark :
i) If $\min _{x \in[a, b]}|\alpha(x)|>\alpha_{0}>0$, then $\operatorname{dim}\left(H^{1}(a, b) / H_{0}^{1}(a, b)\right)=2$.

One-dimensional scalar case: Preliminaries 5/5

If $\alpha(a)=0$ and $\alpha(b) \neq 0$, then we take $\varphi \in \mathcal{W}$ such that $\varphi(b)=1$. Since,

$$
u \in \mathcal{W} \Longrightarrow u-u(b) \varphi \in \mathcal{W}_{0}
$$

we get $\operatorname{span}\left\{\varphi+\mathcal{W}_{0}\right\}=\mathcal{W} / \mathcal{W}_{0}$. Hence, $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
Similarly, if $\alpha(a) \neq 0$ and $\alpha(b)=0, \operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
If $\alpha(a)=\alpha(b)=0$, then $D=0$, hence $\mathcal{W}=\operatorname{ker}(D)=\mathcal{W}_{0}$, implying $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=0$.
Remark :
i) If $\min _{x \in[a, b]}|\alpha(x)|>\alpha_{0}>0$, then $\operatorname{dim}\left(H^{1}(a, b) / H_{0}^{1}(a, b)\right)=2$.
ii) By the decomposition we have

$$
\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} \mathcal{W} / \mathcal{W}_{0}
$$

Thus, when $\alpha(a) \alpha(b)=0$ there is only one bijective realisation of T_{0}. When case $\alpha(a) \alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)=\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)$.

One-dimensional scalar case: Preliminaries 5/5

If $\alpha(a)=0$ and $\alpha(b) \neq 0$, then we take $\varphi \in \mathcal{W}$ such that $\varphi(b)=1$. Since,

$$
u \in \mathcal{W} \Longrightarrow u-u(b) \varphi \in \mathcal{W}_{0}
$$

we get $\operatorname{span}\left\{\varphi+\mathcal{W}_{0}\right\}=\mathcal{W} / \mathcal{W}_{0}$. Hence, $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
Similarly, if $\alpha(a) \neq 0$ and $\alpha(b)=0, \operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=1$.
If $\alpha(a)=\alpha(b)=0$, then $D=0$, hence $\mathcal{W}=\operatorname{ker}(D)=\mathcal{W}_{0}$, implying $\operatorname{dim}\left(\mathcal{W} / \mathcal{W}_{0}\right)=0$.
Remark:
i) If $\min _{x \in[a, b]}|\alpha(x)|>\alpha_{0}>0$, then $\operatorname{dim}\left(H^{1}(a, b) / H_{0}^{1}(a, b)\right)=2$.
ii) By the decomposition we have

$$
\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=\operatorname{dim} \mathcal{W} / \mathcal{W}_{0}
$$

Thus, when $\alpha(a) \alpha(b)=0$ there is only one bijective realisation of T_{0}. When case $\alpha(a) \alpha(b) \neq 0$ there are infinitely many bijective realisations if and only if $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)=\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)$.

We shall justify and improve these conclusions by a direct inspection.

Classification 1/8

Case 1: $\alpha(a) \alpha(b)=0$: For $\alpha(a)=\alpha(b)=0$, We have $D \equiv 0$. So, $\mathcal{W}_{0}=\operatorname{ker}(D)=\mathcal{W}$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}})=(\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is $\left(T_{1}, \widetilde{T}_{1}\right)$.

Classification $1 / 8$

Case 1: $\alpha(a) \alpha(b)=0$: For $\alpha(a)=\alpha(b)=0$, We have $D \equiv 0$. So, $\mathcal{W}_{0}=\operatorname{ker}(D)=\mathcal{W}$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}})=(\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is $\left(T_{1}, \widetilde{T}_{1}\right)$.

For $\alpha(a)=0, \alpha(b)>0$, We have :

$$
\begin{aligned}
\forall u, v \in \mathcal{W}, & \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=\alpha(b) u(b) \overline{v(b)} \\
\forall u \in \mathcal{W}, & \mathcal{W}^{\prime}\langle D u, u\rangle_{\mathcal{W}}=\alpha(b)|u(b)|^{2} \geq 0 \\
\text { And, } & \mathcal{W}_{0}=\{u \in \mathcal{W}: u(b)=0\}
\end{aligned}
$$

Classification $1 / 8$

Case 1: $\alpha(a) \alpha(b)=0$: For $\alpha(a)=\alpha(b)=0$, We have $D \equiv 0$. So, $\mathcal{W}_{0}=\operatorname{ker}(D)=\mathcal{W}$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}})=(\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is $\left(T_{1}, \widetilde{T}_{1}\right)$.

For $\alpha(a)=0, \alpha(b)>0$, We have :

$$
\begin{aligned}
\forall u, v \in \mathcal{W}, & \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=\alpha(b) u(b) \overline{v(b)} \\
\forall u \in \mathcal{W}, & \mathcal{W}^{\prime}\langle D u, u\rangle_{\mathcal{W}}=\alpha(b)|u(b)|^{2} \geq 0 \\
\text { And, } & \mathcal{W}_{0}=\{u \in \mathcal{W}: u(b)=0\}
\end{aligned}
$$

So, pair $\left(\mathcal{W}, \mathcal{W}_{0}\right)$ satisfies condition $(\mathrm{V} 1)$. Furthermore, $\left(T_{1}\left|\mathcal{W}, \widetilde{T}_{1}\right| \mathcal{W}_{0}\right)=\left(T_{1}, \widetilde{T}_{0}\right)$ is trivially a pair of mutually adjoint operators and so it is a pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}). Since this implies that $\operatorname{ker} T_{1}=\{0\},\left(T_{1}, \widetilde{T}_{0}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).

Classification 1/8

Case 1: $\alpha(a) \alpha(b)=0$: For $\alpha(a)=\alpha(b)=0$, We have $D \equiv 0$. So, $\mathcal{W}_{0}=\operatorname{ker}(D)=\mathcal{W}$, thus the only possible choice is $(\mathcal{V}, \widetilde{\mathcal{V}})=(\mathcal{W}, \mathcal{W})$. Hence, the only possible pair of mutually adjoint bijective realisation is $\left(T_{1}, \widetilde{T}_{1}\right)$.

For $\alpha(a)=0, \alpha(b)>0$, We have :

$$
\begin{aligned}
\forall u, v \in \mathcal{W}, & \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=\alpha(b) u(b) \overline{v(b)} \\
\forall u \in \mathcal{W}, & \mathcal{W}^{\prime}\langle D u, u\rangle_{\mathcal{W}}=\alpha(b)|u(b)|^{2} \geq 0 \\
\text { And, } & \mathcal{W}_{0}=\{u \in \mathcal{W}: u(b)=0\}
\end{aligned}
$$

So, pair $\left(\mathcal{W}, \mathcal{W}_{0}\right)$ satisfies condition (V1). Furthermore, $\left(T_{1}\left|\mathcal{W}, \widetilde{T}_{1}\right|_{\mathcal{W}_{0}}\right)=\left(T_{1}, \widetilde{T}_{0}\right)$ is trivially a pair of mutually adjoint operators and so it is a pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}). Since this implies that $\operatorname{ker} T_{1}=\{0\},\left(T_{1}, \widetilde{T}_{0}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).
Similarly, for $\alpha(a)=0, \alpha(b)<0$, we have $(\mathcal{V}, \widetilde{\mathcal{V}})=\left(\mathcal{W}_{0}, \mathcal{W}\right)$.

$$
(\mathcal{V}, \tilde{\mathcal{V}})= \begin{cases}\left(\mathcal{W}, \mathcal{W}_{0}\right) \quad, \quad(\alpha(a)=0 \wedge \alpha(b) \geq 0) \vee(\alpha(a) \leq 0 \wedge \alpha(b)=0) \\ (\mathcal{W} 0, \mathcal{W}) \quad, \quad(\alpha(a)=0 \wedge \alpha(b) \leq 0) \vee(\alpha(a) \geq 0 \wedge \alpha(b)=0)\end{cases}
$$

Classification 2/8

Kernels: If $\alpha(a)=\alpha(b)=0$, then $\operatorname{ker} T_{1}=\operatorname{ker} \widetilde{T}_{1}=\{0\}$, i.e. both equations

$$
(\alpha \varphi)^{\prime}+\beta \varphi=0 \quad \text { and } \quad-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi=0
$$

do not have any non-trivial solution in \mathcal{W}.

Classification 2/8

Kernels: If $\alpha(a)=\alpha(b)=0$, then $\operatorname{ker} T_{1}=\operatorname{ker} \widetilde{T}_{1}=\{0\}$, i.e. both equations

$$
(\alpha \varphi)^{\prime}+\beta \varphi=0 \quad \text { and } \quad-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi=0
$$

do not have any non-trivial solution in \mathcal{W}.
If exactly one of numbers $\alpha(a)$ and $\alpha(b)$ is zero, then from Remark (ii) we have $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=1$ and so one of the dimensions is 0 .

Classification 2/8

Kernels: If $\alpha(a)=\alpha(b)=0$, then $\operatorname{ker} T_{1}=\operatorname{ker} \widetilde{T}_{1}=\{0\}$, i.e. both equations

$$
(\alpha \varphi)^{\prime}+\beta \varphi=0 \quad \text { and } \quad-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi=0
$$

do not have any non-trivial solution in \mathcal{W}.
If exactly one of numbers $\alpha(a)$ and $\alpha(b)$ is zero, then from Remark (ii) we have $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=1$ and so one of the dimensions is 0 .
Specifically, if $\alpha(a)=0$ and $\alpha(b) \geq 0$, then $\left(T_{1}, \widetilde{T}_{0}\right)$ is the adjoint pair and so $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)=0$. Hence $\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=1$.

Classification 2/8

Kernels: If $\alpha(a)=\alpha(b)=0$, then $\operatorname{ker} T_{1}=\operatorname{ker} \widetilde{T}_{1}=\{0\}$, i.e. both equations

$$
(\alpha \varphi)^{\prime}+\beta \varphi=0 \quad \text { and } \quad-(\alpha \varphi)^{\prime}+\left(\bar{\beta}+\alpha^{\prime}\right) \varphi=0
$$

do not have any non-trivial solution in \mathcal{W}.
If exactly one of numbers $\alpha(a)$ and $\alpha(b)$ is zero, then from Remark (ii) we have $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=1$ and so one of the dimensions is 0 .
Specifically, if $\alpha(a)=0$ and $\alpha(b) \geq 0$, then $\left(T_{1}, \widetilde{T}_{0}\right)$ is the adjoint pair and so $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)=0$. Hence $\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=1$.

Classification 3/8

Case 2: $\alpha(a) \alpha(b)<0: \mathcal{W}_{0}=\{u \in \mathcal{W}: u(a)=u(b)=0\}$ For $\alpha(a)>0$ and $\alpha(b)<0$. Then for any $u \in \mathcal{W}$ we have

$$
\mathcal{W}^{\prime}\langle D u, u\rangle_{\mathcal{W}}=\alpha(b)|u(b)|^{2}-\alpha(a)|u(a)|^{2} \leq 0
$$

Hence, we get $\left(T_{0}, \widetilde{T}_{1}\right)=\left(T_{1}\left|\mathcal{W}_{0}, \widetilde{T}_{1}\right| \mathcal{W}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).

Classification 3/8

Case 2: $\alpha(a) \alpha(b)<0: \mathcal{W}_{0}=\{u \in \mathcal{W}: u(a)=u(b)=0\}$ For $\alpha(a)>0$ and $\alpha(b)<0$. Then for any $u \in \mathcal{W}$ we have

$$
\mathcal{W}^{\prime}\langle D u, u\rangle_{\mathcal{W}}=\alpha(b)|u(b)|^{2}-\alpha(a)|u(a)|^{2} \leq 0
$$

Hence, we get $\left(T_{0}, \widetilde{T}_{1}\right)=\left(T_{1}\left|\mathcal{W}_{0}, \widetilde{T}_{1}\right| \mathcal{W}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).
Analogously, for $\alpha(a)<0$ and $\alpha(b)>0$ we see that $\left(T_{1}, \widetilde{T}_{0}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).

Classification 3/8

Case 2: $\alpha(a) \alpha(b)<0: \mathcal{W}_{0}=\{u \in \mathcal{W}: u(a)=u(b)=0\}$ For $\alpha(a)>0$ and $\alpha(b)<0$. Then for any $u \in \mathcal{W}$ we have

$$
\mathcal{W}^{\prime}\langle D u, u\rangle_{\mathcal{W}}=\alpha(b)|u(b)|^{2}-\alpha(a)|u(a)|^{2} \leq 0
$$

Hence, we get $\left(T_{0}, \widetilde{T}_{1}\right)=\left(T_{1}\left|\mathcal{W}_{0}, \widetilde{T}_{1}\right| \mathcal{W}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).
Analogously, for $\alpha(a)<0$ and $\alpha(b)>0$ we see that $\left(T_{1}, \widetilde{T}_{0}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).
Kernels: Although in this case $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=2$, we have only one bijective realisation. So, for $\alpha(a)>0$ we have $\left(\operatorname{dim}\left(\operatorname{ker} T_{1}\right), \operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)\right)=(2,0)$, while for $\alpha(a)<0$ it is $\left(\operatorname{dim}\left(\operatorname{ker} T_{1}\right), \operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)\right)=(0,2)$.

Classification 3/8

Case 2: $\alpha(a) \alpha(b)<0: \mathcal{W}_{0}=\{u \in \mathcal{W}: u(a)=u(b)=0\}$ For $\alpha(a)>0$ and $\alpha(b)<0$. Then for any $u \in \mathcal{W}$ we have

$$
\mathcal{W}^{\prime}\langle D u, u\rangle_{\mathcal{W}}=\alpha(b)|u(b)|^{2}-\alpha(a)|u(a)|^{2} \leq 0
$$

Hence, we get $\left(T_{0}, \widetilde{T}_{1}\right)=\left(T_{1}\left|\mathcal{W}_{0}, \widetilde{T}_{1}\right| \mathcal{W}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).
Analogously, for $\alpha(a)<0$ and $\alpha(b)>0$ we see that $\left(T_{1}, \widetilde{T}_{0}\right)$ is the only pair of mutually adjoint bijective realisations relative to (T, \widetilde{T}).
Kernels: Although in this case $\operatorname{dim}\left(\operatorname{ker} T_{1}\right)+\operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)=2$, we have only one bijective realisation. So, for $\alpha(a)>0$ we have $\left(\operatorname{dim}\left(\operatorname{ker} T_{1}\right), \operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)\right)=(2,0)$, while for $\alpha(a)<0$ it is $\left(\operatorname{dim}\left(\operatorname{ker} T_{1}\right), \operatorname{dim}\left(\operatorname{ker} \widetilde{T}_{1}\right)\right)=(0,2)$.
Let $\alpha(a)<0$. We have $\alpha^{-1}(\{0\}) \neq \emptyset$.

Classification 4/8

Case 3: $\alpha(a) \alpha(b)>0: \mathcal{W}_{0}=\{u \in \mathcal{W}: u(a)=u(b)=0\}$, the boundary operator is

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=\alpha(b) u(b) \overline{v(b)}-\alpha(a) u(a) \overline{v(a)}, \quad u, v \in \mathcal{W}
$$

Let us define

$$
\mathcal{V}:=\left\{u \in \mathcal{W}: u(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a)\right\}
$$

Classification 4/8

Case 3: $\alpha(a) \alpha(b)>0: \mathcal{W}_{0}=\{u \in \mathcal{W}: u(a)=u(b)=0\}$, the boundary operator is

$$
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=\alpha(b) u(b) \overline{v(b)}-\alpha(a) u(a) \overline{v(a)}, \quad u, v \in \mathcal{W} .
$$

Let us define

$$
\mathcal{V}:=\left\{u \in \mathcal{W}: u(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a)\right\}
$$

For an arbitrary $u \in \mathcal{V}$ and $v \in \mathcal{W}$ we have

$$
\begin{aligned}
\mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}} & =\alpha(b) u(b) \overline{v(b)}-\alpha(a) u(a) \overline{v(a)} \\
& =\alpha(b)\left(u(b) \overline{v(b)}-\sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a) \sqrt{\frac{\alpha(a)}{\alpha(b)}} \overline{v(a)}\right) \\
& =\alpha(b) u(b)\left(v(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)\right)
\end{aligned}
$$

In particular,

$$
(\forall u, v \in \mathcal{V}) \quad \mathcal{W}^{\prime}\langle D u, v\rangle_{\mathcal{W}}=0
$$

implying that $(\mathcal{V}, \mathcal{V})$ satisfies condition $(\mathrm{V} 1)$ and that $\mathcal{V} \subseteq \mathcal{V}^{[\perp]}$.

Classification 5/8

Now let $v \in \mathcal{V}^{[\perp]}$. Then for any $u \in \mathcal{V}$

$$
\alpha(b) u(b) \overline{\left(v(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)\right)}=0 .
$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)$, i.e. $v \in \mathcal{V}$.

Classification 5/8

Now let $v \in \mathcal{V}^{[\perp]}$. Then for any $u \in \mathcal{V}$

$$
\alpha(b) u(b) \overline{\left(v(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)\right)}=0 .
$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)$, i.e. $v \in \mathcal{V}$.
Therefore, $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ is indeed a mutually adjoint pair of bijective realisations relative to (T, \widetilde{T}). It is evident that $\mathcal{W}_{0} \varsubsetneqq \mathcal{V} \varsubsetneqq \mathcal{W}$, hence there are infinitely many bijective realisations.

Classification 5/8

Now let $v \in \mathcal{V}^{[\perp]}$. Then for any $u \in \mathcal{V}$

$$
\alpha(b) u(b) \overline{\left(v(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)\right)}=0 .
$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)$, i.e. $v \in \mathcal{V}$.
Therefore, $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ is indeed a mutually adjoint pair of bijective realisations relative to (T, \widetilde{T}). It is evident that $\mathcal{W}_{0} \varsubsetneqq \mathcal{V} \varsubsetneqq \mathcal{W}$, hence there are infinitely many bijective realisations.

In this case we have $\operatorname{dim} \operatorname{ker} T_{1}=\operatorname{dim} \operatorname{ker} \widetilde{T}=1$. Implies that the only (non-trivial) choice is $\operatorname{dom} B=\mathcal{Z}=\operatorname{ker} T_{1}$ and $\widetilde{\mathcal{Z}}=\operatorname{dom} \widetilde{T}_{1}$. Then there exists $(c+i d) \in \mathbb{C} \backslash\{0\}$ such that $B \varphi=(c+i d) \tilde{\varphi}$ (to get bijective realisations).

Classification 5/8

Now let $v \in \mathcal{V}^{[\perp]}$. Then for any $u \in \mathcal{V}$

$$
\alpha(b) u(b) \overline{\left(v(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)\right)}=0 .
$$

Since $\alpha(b) \neq 0$ and there exists $u \in \mathcal{V}$ such that $u(b) \neq 0$ (e.g. just consider a linear function), this implies $v(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} v(a)$, i.e. $v \in \mathcal{V}$.
Therefore, $\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)$ is indeed a mutually adjoint pair of bijective realisations relative to (T, \widetilde{T}). It is evident that $\mathcal{W}_{0} \varsubsetneqq \mathcal{V} \varsubsetneqq \mathcal{W}$, hence there are infinitely many bijective realisations.

In this case we have $\operatorname{dim} \operatorname{ker} T_{1}=\operatorname{dim} \operatorname{ker} \widetilde{T}=1$. Implies that the only (non-trivial) choice is $\operatorname{dom} B=\mathcal{Z}=\operatorname{ker} T_{1}$ and $\widetilde{\mathcal{Z}}=\operatorname{dom} \widetilde{T}_{1}$. Then there exists $(c+i d) \in \mathbb{C} \backslash\{0\}$ such that $B \varphi=(c+i d) \tilde{\varphi}$ (to get bijective realisations).

From the classification theory we have $u \in \mathcal{W}$ belongs to dom $T_{c, d}$ if and only if

$$
P_{\text {ker } \widetilde{T}_{1}}\left(T_{1} u\right)=B\left(p_{\mathrm{k}} u\right)
$$

Classification 6/8

Non-orthogonal projections : For any $u \in \mathcal{W}$ there exist unique $u_{\mathrm{r}} \in \mathcal{V}$ and $u_{\mathrm{k}} \in \operatorname{ker} T_{1}$ such that $u=u_{\mathrm{r}}+u_{\mathrm{k}}$. Moreover, u_{k} is of the form $C_{u} \varphi$, so using

$$
\begin{aligned}
u(a) & =u_{\mathrm{r}}(a)+C_{u} \varphi(a) \\
u(b) & =u_{\mathrm{r}}(b)+C_{u} \varphi(b)
\end{aligned}
$$

and $u_{\mathrm{r}}(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} u_{\mathrm{r}}(a)$. We get

$$
C_{u}=\frac{u(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a)}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}
$$

Classification 6/8

Non-orthogonal projections : For any $u \in \mathcal{W}$ there exist unique $u_{\mathrm{r}} \in \mathcal{V}$ and $u_{\mathrm{k}} \in \operatorname{ker} T_{1}$ such that $u=u_{\mathrm{r}}+u_{\mathrm{k}}$. Moreover, u_{k} is of the form $C_{u} \varphi$, so using

$$
\begin{aligned}
u(a) & =u_{\mathrm{r}}(a)+C_{u} \varphi(a) \\
u(b) & =u_{\mathrm{r}}(b)+C_{u} \varphi(b)
\end{aligned}
$$

and $u_{\mathrm{r}}(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} u_{\mathrm{r}}(a)$. We get

$$
C_{u}=\frac{u(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a)}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}
$$

Thus, the corresponding non-orthogonal projection $p_{\mathrm{k}}: \mathcal{W} \rightarrow \operatorname{ker} T_{1}$ is equal to $p_{\mathrm{k}}(u)=C_{u} \varphi$.

Classification 6/8

Non-orthogonal projections : For any $u \in \mathcal{W}$ there exist unique $u_{\mathrm{r}} \in \mathcal{V}$ and $u_{\mathrm{k}} \in \operatorname{ker} T_{1}$ such that $u=u_{\mathrm{r}}+u_{\mathrm{k}}$. Moreover, u_{k} is of the form $C_{u} \varphi$, so using

$$
\begin{aligned}
u(a) & =u_{\mathrm{r}}(a)+C_{u} \varphi(a) \\
u(b) & =u_{\mathrm{r}}(b)+C_{u} \varphi(b)
\end{aligned}
$$

and $u_{\mathrm{r}}(b)=\sqrt{\frac{\alpha(a)}{\alpha(b)}} u_{\mathrm{r}}(a)$. We get

$$
C_{u}=\frac{u(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a)}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}
$$

Thus, the corresponding non-orthogonal projection $p_{\mathrm{k}}: \mathcal{W} \rightarrow \operatorname{ker} T_{1}$ is equal to $p_{\mathrm{k}}(u)=C_{u} \varphi$. Similarly, $p_{\tilde{\mathrm{k}}}: \mathcal{W} \rightarrow \operatorname{ker} \widetilde{T}_{1}$ is given by $p_{\tilde{\mathrm{k}}}(u)=\tilde{C}_{u} \tilde{\varphi}$, where

$$
\tilde{C}_{u}=\frac{u(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} u(a)}{\tilde{\varphi}(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \tilde{\varphi}(a)} .
$$

Classification $7 / 8$

Orthogonal projection :

$$
\begin{aligned}
P_{\operatorname{ker} \widetilde{T}_{1}}\left(T_{1} u\right) & =\frac{1}{\|\tilde{\varphi}\|^{2}}\left\langle T_{1} u \mid \tilde{\varphi}\right\rangle \tilde{\varphi}=\frac{1}{\|\tilde{\varphi}\|^{2}} \mathcal{W}^{\prime}\langle D u, \tilde{\varphi}\rangle \mathcal{W} \tilde{\varphi} \\
& =\frac{1}{\|\tilde{\varphi}\|^{2}}(\alpha(b) u(b) \overline{\tilde{\varphi}(b)}-\alpha(a) u(a) \overline{\tilde{\varphi}(a)}) \tilde{\varphi}
\end{aligned}
$$

Classification $7 / 8$

Orthogonal projection :

$$
\begin{aligned}
P_{\operatorname{ker} \widetilde{T}_{1}}\left(T_{1} u\right) & =\frac{1}{\|\tilde{\varphi}\|^{2}}\left\langle T_{1} u \mid \tilde{\varphi}\right\rangle \tilde{\varphi}=\frac{1}{\|\tilde{\varphi}\|^{2}} \mathcal{W}^{\prime}\langle D u, \tilde{\varphi}\rangle \mathcal{W} \tilde{\varphi} \\
& =\frac{1}{\|\tilde{\varphi}\|^{2}}(\alpha(b) u(b) \overline{\tilde{\varphi}(b)}-\alpha(a) u(a) \overline{\tilde{\varphi}(a)}) \tilde{\varphi}
\end{aligned}
$$

So, the equation $P_{\text {ker } \widetilde{T}_{1}}\left(T_{1} u\right)=B\left(p_{\mathrm{k}} u\right)$ becomes,

$$
\frac{1}{\|\tilde{\varphi}\|^{2}}(\alpha(b) u(b) \overline{\tilde{\varphi}(b)}-\alpha(a) u(a) \overline{\tilde{\varphi}(a)}) \tilde{\varphi}=(c+i d) C_{u} \tilde{\varphi}
$$

Which gives $u \in \mathcal{W}$ belongs to $\operatorname{dom} T_{c, d}$ if and only if
$[1]\left(\frac{\alpha(b) \overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d)}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(b)=\left(\frac{\alpha(a) \overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d) \sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(a)$.

Classification 7/8

Orthogonal projection :

$$
\begin{aligned}
P_{\operatorname{ker} \widetilde{T}_{1}}\left(T_{1} u\right) & =\frac{1}{\|\tilde{\varphi}\|^{2}}\left\langle T_{1} u \mid \tilde{\varphi}\right\rangle \tilde{\varphi}=\frac{1}{\|\tilde{\varphi}\|^{2}} \mathcal{W}^{\prime}\langle D u, \tilde{\varphi}\rangle \mathcal{W} \tilde{\varphi} \\
& =\frac{1}{\|\tilde{\varphi}\|^{2}}(\alpha(b) u(b) \overline{\tilde{\varphi}(b)}-\alpha(a) u(a) \overline{\tilde{\varphi}(a)}) \tilde{\varphi}
\end{aligned}
$$

So, the equation $P_{\text {ker } \widetilde{T}_{1}}\left(T_{1} u\right)=B\left(p_{\mathrm{k}} u\right)$ becomes,

$$
\frac{1}{\|\tilde{\varphi}\|^{2}}(\alpha(b) u(b) \overline{\tilde{\varphi}(b)}-\alpha(a) u(a) \overline{\tilde{\varphi}(a)}) \tilde{\varphi}=(c+i d) C_{u} \tilde{\varphi}
$$

Which gives $u \in \mathcal{W}$ belongs to $\operatorname{dom} T_{c, d}$ if and only if
$[1]\left(\frac{\alpha(b) \overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d)}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(b)=\left(\frac{\alpha(a) \overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^{2}}-\frac{(c+i d) \sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\varphi(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \varphi(a)}\right) u(a)$.
Similarly, $u \in \mathcal{W}$ is in $\operatorname{dom} T_{c, d}^{*}$ if and only if
$[2]\left(\alpha(b) \overline{\varphi(b)}-\frac{\|\tilde{\varphi}\|^{2}(c-i d)}{\tilde{\varphi}(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \tilde{\varphi}(a)}\right) u(b)=\left(\alpha(a) \overline{\varphi(a)}-\frac{\|\tilde{\varphi}\|^{2}(c-i d) \sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\tilde{\varphi}(b)-\sqrt{\frac{\alpha(a)}{\alpha(b)}} \tilde{\varphi}(a)}\right) u(a)$.

Classification 8/8

So, the set of all pairs of mutually adjoint bijective realisations relative to (T, \widetilde{T}) is given by

$$
[3] \quad\left\{\left(T_{c, d}, T_{c, d}^{*}\right): c, d \in \mathbb{R}^{2} \backslash\{(0,0)\}\right\} \bigcup\left\{\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)\right\} .
$$

Kernels: If $\min _{x \in[a, b]}|\alpha(x)|>0$, then simply

$$
\varphi(x)=\frac{1}{\alpha(x)} \exp \left(-\int \frac{\beta(x)}{\alpha(x)} d x\right) \quad \text { and } \quad \tilde{\varphi}(x)=\exp \left(\int \frac{\overline{\beta(x)}}{\alpha(x)} d x\right) .
$$

Classification 8/8

So, the set of all pairs of mutually adjoint bijective realisations relative to (T, \widetilde{T}) is given by

$$
[3] \quad\left\{\left(T_{c, d}, T_{c, d}^{*}\right): c, d \in \mathbb{R}^{2} \backslash\{(0,0)\}\right\} \bigcup\left\{\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)\right\} .
$$

Kernels: If $\min _{x \in[a, b]}|\alpha(x)|>0$, then simply

$$
\varphi(x)=\frac{1}{\alpha(x)} \exp \left(-\int \frac{\beta(x)}{\alpha(x)} d x\right) \quad \text { and } \quad \tilde{\varphi}(x)=\exp \left(\int \frac{\overline{\beta(x)}}{\alpha(x)} d x\right) .
$$

If $\alpha^{-1}(\{0\}) \cap(a, b) \neq \emptyset$,

Classification 8/8

So, the set of all pairs of mutually adjoint bijective realisations relative to (T, \widetilde{T}) is given by

$$
[3] \quad\left\{\left(T_{c, d}, T_{c, d}^{*}\right): c, d \in \mathbb{R}^{2} \backslash\{(0,0)\}\right\} \bigcup\left\{\left(T_{\mathrm{r}}, T_{\mathrm{r}}^{*}\right)\right\} .
$$

Kernels: If $\min _{x \in[a, b]}|\alpha(x)|>0$, then simply

$$
\varphi(x)=\frac{1}{\alpha(x)} \exp \left(-\int \frac{\beta(x)}{\alpha(x)} d x\right) \quad \text { and } \quad \tilde{\varphi}(x)=\exp \left(\int \frac{\overline{\beta(x)}}{\alpha(x)} d x\right)
$$

If $\alpha^{-1}(\{0\}) \cap(a, b) \neq \emptyset$,

Summary :

α at end-points	No. of bij. realisations	$(\mathcal{V}, \widetilde{\mathcal{V}})$	
$\alpha(a) \alpha(b) \leq 0$	1	$\frac{\alpha(a) \geq 0 \wedge \alpha(b) \leq 0}{}\left(\mathcal{W}_{0}, \mathcal{W}\right)$	
$\alpha(a) \alpha(b)>0$	∞	[3] (see [1] and [2])	

Examples

Example 1 : Take the interval $\Omega:=(0,2)$ and coefficients $\alpha(x)=1-x$ and $\beta=1$. Then

$$
T \varphi=((1-x) \varphi)^{\prime}+\varphi
$$

and

$$
\widetilde{T} \varphi=-((1-x) \varphi)^{\prime}
$$

Here $2 \Re \beta+\alpha^{\prime}=2-1=1>0$ on $(0,2)$, meaning that (T, \widetilde{T}) is a pair of abstract Friedrichs operators.

Examples

Example 1 : Take the interval $\Omega:=(0,2)$ and coefficients $\alpha(x)=1-x$ and $\beta=1$. Then

$$
T \varphi=((1-x) \varphi)^{\prime}+\varphi
$$

and

$$
\widetilde{T} \varphi=-((1-x) \varphi)^{\prime}
$$

Here $2 \Re \beta+\alpha^{\prime}=2-1=1>0$ on $(0,2)$, meaning that (T, \widetilde{T}) is a pair of abstract Friedrichs operators.
Solving on $(0,1)$ and $(1,2)$ separately we get that for $\varphi \in \operatorname{ker} T_{1}$ necessarily

$$
\varphi=\left\{\begin{array}{lll}
c_{1} & , & \text { in }(0,1) \\
c_{2} & , & \text { in }(1,2)
\end{array}\right.
$$

for some constants $c_{1}, c_{2} \in \mathbb{C}$.

Examples

Example 1 : Take the interval $\Omega:=(0,2)$ and coefficients $\alpha(x)=1-x$ and $\beta=1$. Then

$$
T \varphi=((1-x) \varphi)^{\prime}+\varphi
$$

and

$$
\widetilde{T} \varphi=-((1-x) \varphi)^{\prime}
$$

Here $2 \Re \beta+\alpha^{\prime}=2-1=1>0$ on $(0,2)$, meaning that (T, \widetilde{T}) is a pair of abstract Friedrichs operators.
Solving on $(0,1)$ and $(1,2)$ separately we get that for $\varphi \in \operatorname{ker} T_{1}$ necessarily

$$
\varphi= \begin{cases}c_{1} & , \quad \text { in }(0,1) \\ c_{2} & , \quad \text { in }(1,2)\end{cases}
$$

for some constants $c_{1}, c_{2} \in \mathbb{C}$. We have $\varphi \in \mathcal{W}$. Indeed, it is evident that $\varphi \in L^{2}(0,2)$, while for $\psi \in C_{c}^{\infty}(0,2)$ we have

$$
\begin{aligned}
\int_{0}^{2}(1-x) \varphi(x) \psi^{\prime}(x) d x & =\int_{0}^{1}(1-x) \varphi(x) \psi^{\prime}(x) d x+\int_{1}^{2}(1-x) \varphi(x) \psi^{\prime}(x) d x \\
& =c_{1} \int_{0}^{1}(1-x) \psi^{\prime}(x) d x+c_{2} \int_{1}^{2}(1-x) \psi^{\prime}(x) d x \\
& =c_{1} \int_{0}^{1} \psi(x) d x+c_{2} \int_{1}^{2} \psi(x) d x=\int_{0}^{2} \varphi(x) \psi(x) d x
\end{aligned}
$$

Examples

This means $((1-x) \varphi)^{\prime}=-\varphi \in L^{2}(0,2)$, thus $\varphi \in \mathcal{W}$. Therefore, dim ker $T_{1}=2$ (since we have two parameters in the definition of φ).

Examples

This means $((1-x) \varphi)^{\prime}=-\varphi \in L^{2}(0,2)$, thus $\varphi \in \mathcal{W}$. Therefore, $\operatorname{dim} \operatorname{ker} T_{1}=2$ (since we have two parameters in the definition of φ).
On the other hand, $\tilde{\varphi} \in \operatorname{ker} \widetilde{T}_{1}$ implies

$$
\tilde{\varphi}(x)= \begin{cases}\frac{d_{1}}{1-x} & , \quad x \in(0,1) \\ \frac{d_{2}}{1-x} & , \quad x \in(1,2)\end{cases}
$$

for some constants $d_{1}, d_{2} \in \mathbb{C}$.

Examples

This means $((1-x) \varphi)^{\prime}=-\varphi \in L^{2}(0,2)$, thus $\varphi \in \mathcal{W}$. Therefore, $\operatorname{dim} \operatorname{ker} T_{1}=2$ (since we have two parameters in the definition of φ).
On the other hand, $\tilde{\varphi} \in \operatorname{ker} \widetilde{T}_{1}$ implies

$$
\tilde{\varphi}(x)= \begin{cases}\frac{d_{1}}{1-x} & , \quad x \in(0,1) \\ \frac{d_{2}}{1-x} & , \quad x \in(1,2)\end{cases}
$$

for some constants $d_{1}, d_{2} \in \mathbb{C}$.
But $\tilde{\varphi} \in L^{2}(0,2)$ if and only if $d_{1}=d_{2}=0$. Hence, $\operatorname{ker} \widetilde{T}_{1}=\{0\}$ and $\operatorname{dim} \operatorname{ker} \widetilde{T}_{1}=0$, justifying the results obtained in Case 2.

Examples

This means $((1-x) \varphi)^{\prime}=-\varphi \in L^{2}(0,2)$, thus $\varphi \in \mathcal{W}$. Therefore, $\operatorname{dim} \operatorname{ker} T_{1}=2$ (since we have two parameters in the definition of φ).
On the other hand, $\tilde{\varphi} \in \operatorname{ker} \widetilde{T}_{1}$ implies

$$
\tilde{\varphi}(x)=\left\{\begin{array}{lll}
\frac{d_{1}}{1-x} & , \quad x \in(0,1) \\
\frac{d_{2}}{1-x} & , \quad x \in(1,2)
\end{array}\right.
$$

for some constants $d_{1}, d_{2} \in \mathbb{C}$.
But $\tilde{\varphi} \in L^{2}(0,2)$ if and only if $d_{1}=d_{2}=0$. Hence, $\operatorname{ker} \widetilde{T}_{1}=\{0\}$ and $\operatorname{dim} \operatorname{ker} \widetilde{T}_{1}=0$, justifying the results obtained in Case 2.
It is interesting to note that for $c_{1} \neq c_{2}$ we have $\varphi^{\prime} \notin L^{2}(0,2)$, because $\varphi^{\prime}=\left(c_{2}-c_{1}\right) \delta_{1}$ (here δ_{1} is the Dirac measure at 1) and so $\varphi \notin H^{1}(0,2)$. Thus, $H^{1}(0,2) \varsubsetneqq \mathcal{W}$.

Examples

This means $((1-x) \varphi)^{\prime}=-\varphi \in L^{2}(0,2)$, thus $\varphi \in \mathcal{W}$. Therefore, dim ker $T_{1}=2$ (since we have two parameters in the definition of φ).
On the other hand, $\tilde{\varphi} \in \operatorname{ker} \widetilde{T}_{1}$ implies

$$
\tilde{\varphi}(x)= \begin{cases}\frac{d_{1}}{1-x} & , \quad x \in(0,1) \\ \frac{d_{2}}{1-x} & , x \in(1,2)\end{cases}
$$

for some constants $d_{1}, d_{2} \in \mathbb{C}$.
But $\tilde{\varphi} \in L^{2}(0,2)$ if and only if $d_{1}=d_{2}=0$. Hence, $\operatorname{ker} \widetilde{T}_{1}=\{0\}$ and $\operatorname{dim} \operatorname{ker} \widetilde{T}_{1}=0$, justifying the results obtained in Case 2.

It is interesting to note that for $c_{1} \neq c_{2}$ we have $\varphi^{\prime} \notin L^{2}(0,2)$, because $\varphi^{\prime}=\left(c_{2}-c_{1}\right) \delta_{1}$ (here δ_{1} is the Dirac measure at 1) and so $\varphi \notin H^{1}(0,2)$. Thus, $H^{1}(0,2) \varsubsetneqq \mathcal{W}$.

Moreover, $\tilde{\varphi} \in H_{\mathrm{loc}}^{1}([0,2] \backslash\{1\})$ for any choice of parameters d_{1}, d_{2}. Indeed, for any subinterval $[c, d] \subseteq[0,2] \backslash\{1\}$ we have $\left.\tilde{\varphi}\right|_{(c, d)} \in \mathrm{H}^{1}(c, d)$. Since $\tilde{\varphi} \notin \mathcal{W}$ this shows that \mathcal{W} is indeed a proper subspace of $H_{\mathrm{loc}}^{1}([0,2] \backslash\{1\})$, i.e. $\mathcal{W} \varsubsetneqq H_{\mathrm{loc}}^{1}([0,2] \backslash\{1\})$.

And...

...thank you for your attention :)

