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Classical Friedrichs operators

Assumptions:
d, r ∈ N, Ω ⊆ Rd open and bounded with Lipschitz boundary;
Ak ∈W 1,∞(Ω;Mr(C)), k ∈ {1, . . . , d}, and B ∈ L∞(Ω;Mr(C)) satisfying (a.e. on Ω):

Ak = A∗
k ;(F1)

(∃µ0 > 0) B+B∗ +
d∑

k=1

∂kAk ⩾ 2µ0I .(F2)

Define L, L̃ : L2(Ω)r → D′(Ω)r by

Lu :=

d∑
k=1

∂k(Aku) +Bu , L̃u := −
d∑

k=1

∂k(Aku) +
(
B∗ +

d∑
k=1

∂kAk

)
u .

Aim: impose boundary conditions such that for any f ∈ L2(Ω)r we have a unique
solution of Lu = f.

K. O. Friedrichs: Symmetric positive linear differential equations, Commun. Pure
Appl. Math. 11 (1958) 333–418.
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Abstract Friedrichs operators

(H, ⟨ · | · ⟩) complex Hilbert space (H′ ≡ H), ∥ · ∥ :=
√
⟨ · | · ⟩

D ⊆ H dense subspace

Definition

Let T, T̃ : D → H. The pair (T, T̃ ) is called a joint pair of abstract Friedrichs operators
if the following holds:

(∀φ,ψ ∈ D) ⟨Tφ | ψ ⟩ = ⟨φ | T̃ψ ⟩ ;(T1)

(∃ c > 0)(∀φ ∈ D) ∥(T + T̃ )φ∥ ⩽ c∥φ∥ ;(T2)

(∃µ0 > 0)(∀φ ∈ D) ⟨ (T + T̃ )φ | φ ⟩ ⩾ µ0∥φ∥2 .(T3)

A. Ern, J.L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert
operators related to Friedrichs’ systems, Comm. Partial Diff. Eq. 32 (2007) 317–341.

N. Antonić, K. Burazin: Intrinsic boundary conditions for Friedrichs systems,
Comm. Partial Diff. Eq. 35 (2010) 1690–1715.
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Characterisation of joint pair of abstract Friedrichs operators

T0 := T , T̃0 := T̃ on W0(closure of D) and T1 := T̃ ∗ , T̃1 := T ∗ on W(the graph space).
Boundary map (form): D :W →W ′,

[u | v] := W′⟨Du, v⟩W := ⟨T1u | v ⟩ − ⟨u | T̃1v ⟩ .

(W, [· | ·]) is an indefinite inner product space. (∃ 0 ̸= u ∈ W, [u |u] = 0)

For V, Ṽ ⊆ W we introduce two conditions:

(V1)
(∀u ∈ V) [u |u] ⩾ 0 ,

(∀ v ∈ Ṽ) [v | v] ⩽ 0 .

(V2) V [⊥] = Ṽ , Ṽ [⊥] = V .

Well-posedness:

Theorem (Ern, Guermond, Caplain, 2007)

(T1)–(T3) + (V1)–(V2) =⇒ T1|V , T̃1|Ṽ bijective realisations .
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Existance, multiplicity and classification

We seek for bijective closed operators S ≡ T̃ ∗|V such that

T ⊆ S ⊆ T̃ ∗ ,

and thus also S∗ is bijective and T̃ ⊆ S∗ ⊆ T ∗. We call (S, S∗) an adjoint pair of

bijective realisations relative to (T, T̃ ).

Theorem (Antonić, Erceg, Michelangeli, 2017 )

Let (T, T̃ ) satisfies (T1)–(T3).

(i) There exists an adjoint pair of bijective realisations with signed boundary map

relative to (T, T̃ ).

(ii)

ker T̃ ∗ ̸= {0} & kerT ∗ ̸= {0} =⇒
uncountably many adjoint pairs of bijective

realisations with signed boundary map

ker T̃ ∗ = {0} or kerT ∗ = {0} =⇒
only one adjoint pair of bijective realisations

with signed boundary map
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Classification 1/2

Let (T0, T̃0) and (T1, T̃1) be two pairs of mutually adjoint, closed and densely defined
operators on H satisfying

T0 ⊆ (T̃0)
∗ = T1 and T̃0 ⊆ (T0)

∗ = T̃1 ,

which admit a pair (Tr, T
∗
r ) of reference operators that are closed, satisfy T0 ⊆ Tr ⊆ T1,

equivalently T̃0 ⊆ T ∗
r ⊆ T̃1, and are invertible with everywhere defined bounded inverses

T−1
r and (T ∗

r )
−1.

Then
(i)

domT1 = domTr ∔ kerT1 and dom T̃1 = domT ∗
r ∔ ker T̃1 .

The corresponding (non-orthogonal) projections

pr : domT1 → domTr , pr̃ : dom T̃1 → domT ∗
r ,

pk : domT1 → kerT1 , pk̃ : dom T̃1 → ker T̃1 ,

satisfying

pr = T−1
r T1 , pr̃ = (T ∗

r )
−1T̃1 ,

pk = 1− pr , pk̃ = 1− pr̃ ,

and being continuous with respect to the graph norms.
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Classification 2/2

(ii) {
(A,A∗) : T̃0 ⊆ A ⊆ T1

}
1:1←→

{
(B,B∗) : B : Z → Z̃ closed densely defined

}
,

where Z, Z̃ run through closed subspaces of kerT1 and ker T̃1 respectively.

The correspondence is given by

domA =
{
u ∈ domT1 : pku ∈ domB , PZ̃(T1u) = B(pku)

}
,

domA∗ =
{
v ∈ dom T̃1 : pk̃v ∈ domB∗ , PZ(T̃1v) = B∗(pk̃v)

}
.

Conversely, by

domB = pk domA , Z = domB , B(pku) = PZ̃(T1u) ,

domB∗ = pk̃ domA∗ , Z̃ = domB∗ , B∗(pk̃v) = PZ(T̃1v) ,

where PZ and PZ̃ are the orthogonal projections from H onto Z and Z̃.

G. Grubb: A characterization of the non-local boundary value problems associated
with an elliptic operator, Ann. Scuola Norm. Sup. Pisa 22 (1968) 425–513.

N. Antonić, M.Erceg, A. Michelangeli: Friedrichs systems in a Hilbert space
framework: solvability and multiplicity, J. Differential Equations 263 (2017)
8264-8294.
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One-dimensional scalar case: Preliminaries 1/5

Theorem

(T0, T̃0) is a joint pair of closed abstract Friedrichs operators then

W =W0+̇ kerT1+̇ ker T̃1.

Ω = (a, b), a < b, D = C∞
c (a, b) and H = L2(a, b). T, T̃ : D → H :

Tφ := (αφ)′ + βφ and T̃φ := −(αφ)′ + (β + α′)φ .

Here α ∈W 1,∞((a, b);R), β ∈ L∞((a, b);C) and for some µ0 > 0, 2ℜβ+α′ ≥ 2µ0 > 0.

The graph space :

W = {u ∈ H : (αu)′ ∈ H} , ∥u∥W := ∥u∥+ ∥(αu)′∥ .

Equivalently ,

u ∈ W ⇐⇒ αu ∈ H1(a, b) .

So, by Sobolev embedding αu ∈ C(a, b). Implies the evaluation (αu)(x) is well defined.
However, u is not necessarily continuous so α(x)u(x) is not meaningful.
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One-dimensional scalar case: Preliminaries 2/5

Lemma

Let I := [a, b] \ α−1({0}). Then W ⊆ H1
loc(I), i.e. for any u ∈ W and [c, d] ⊆ I, c < d,

we have u|[c,d] ∈ H1(c, d).

Proof : Since α is continuous, I is relatively open in [a, b]. Let us take [c, d] ⊆ I, c < d,
define α0 := minx∈[c,d] |α(x)|. Let u ∈ C∞

c (R), then

∥u′∥L2(c,d) =
∥∥∥ 1

α
αu′

∥∥∥
L2(c,d)

≤ 1

α0
∥αu′∥L2(c,d)

=
1

α0
∥(αu)′ − α′u∥L2(c,d) ≤

1

α0

(
∥(αu)′∥L2(c,d) + ∥α

′u∥L2(c,d)

)
≤ 1

α0

(
∥(αu)′∥+ ∥α′∥L∞(a,b)∥u∥

)
≤

1 + ∥α∥W1,∞(a,b)

α0
∥u∥W .

By density of C∞
c (R) in W we get u|[c,d] ∈ H1(c, d) and there exists C > 0 (dependent

on c, d) :
∥u∥H1(c,d) ≤ C∥u∥W , u ∈ W .
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One-dimensional scalar case: Preliminaries 3/5

The boundary operator can be written explicitly as

W′⟨Du, v ⟩W =
(
αuv

)
(b)−

(
αuv

)
(a) , u, v ∈ W ,

where we define(
αuv

)
(x) :=

{
0 , α(x) = 0

α(x)u(x)v(x) , α(x) ̸= 0
, x ∈ [a, b] .

The domain of the closures T0 and T̃0 satisfies W0 = clWC∞
c (R), is characterised as

Lemma

W0 =
{
u ∈ W : (αu)(a) = (αu)(b) = 0

}
.

Proof : Since kerD =W0, so it is sufficient to prove that this set is kerD. Let u ∈ W
such that (αu)(a) = (αu)(b) = 0, then

∀v ∈ W , W′⟨Du, v ⟩W = (αuv) (b)− (αuv) (a) = 0− 0 = 0 .

So, {u ∈ W : (αu)(a) = (αu)(b) = 0} ⊆ kerD. Conversely, let u ∈ kerD ⊂ W then for
any v ∈ H1(a, b) ⊆ W,

0 = W′⟨Du, v ⟩W = (αuv)(b)− (αuv)(a) = (αu)(b)v(b)− (αu)(a)v(a) .

Here, v was continuous ( Sobolev embedding ). So, (αu)(b) = 0, (αu)(a) = 0. Hence,
kerD ⊆ {u ∈ W : (αu)(a) = (αu)(b) = 0}.
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One-dimensional scalar case: Preliminaries 4/5

Lemma

dim(W/W0) =


2 , α(a)α(b) ̸= 0 ,
1 ,

(
α(a) = 0 ∧ α(b) ̸= 0

)
∨

(
α(a) ̸= 0 ∧ α(b) = 0

)
,

0 , α(a) = α(b) = 0 .

Proof : If α(a)α(b) ̸= 0, then choose φ,ψ ∈ W, such that φ(a) = 1, φ(b) = 0 and
ψ(a) = 0, ψ(b) = 1. Define φ̂ := φ+W0 and ψ̂ := ψ +W0. Then E := {φ̂, ψ̂} is a
basis of W/W0.
If E were linearly dependent then for some non-zero scalar r we would have ψ̂ = rφ̂,
implying ψ̂ − rφ̂ = 0̂ =W0. Hence, ψ − rφ ∈ W0, so(

α(ψ − rφ)
)
(a) =

(
α(ψ − rφ)

)
(b) = 0 .

But, (
α(ψ − rφ)

)
(a) = α(a)ψ(a)− rα(a)φ(a) = 0− rα(a) = −rα(a) ̸= 0 ,

which is a contradiction. Hence, E is linearly independent.

Now let u ∈ W, then
u− u(a)φ− u(b)ψ ∈ W0 ,

means E spans W/W0. So, E is a basis of W/W0, hence dim(W/W0) = 2.
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One-dimensional scalar case: Preliminaries 5/5

If α(a) = 0 and α(b) ̸= 0, then we take φ ∈ W such that φ(b) = 1. Since,

u ∈ W =⇒ u− u(b)φ ∈ W0 ,

we get span{φ+W0} =W/W0. Hence, dim(W/W0) = 1.
Similarly, if α(a) ̸= 0 and α(b) = 0, dim(W/W0) = 1.

If α(a) = α(b) = 0, then D = 0, hence W = ker(D) =W0, implying dim(W/W0) = 0.

Remark :

i) If minx∈[a,b] |α(x)| > α0 > 0, then dim
(
H1(a, b)/H1

0 (a, b)
)
= 2.

ii) By the decomposition we have

dim(kerT1) + dim(ker T̃1) = dimW/W0 .

Thus, when α(a)α(b) = 0 there is only one bijective realisation of T0. When case
α(a)α(b) ̸= 0 there are infinitely many bijective realisations if and only if

dim(kerT1) = dim(ker T̃1).

We shall justify and improve these conclusions by a direct inspection.
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Classification 1/8

Case 1: α(a)α(b) = 0 : For α(a) = α(b) = 0, We have D ≡ 0. So, W0 = ker(D) =W,

thus the only possible choice is (V, Ṽ) = (W,W). Hence, the only possible pair of

mutually adjoint bijective realisation is (T1, T̃1).

For α(a) = 0, α(b) > 0, We have :

∀u, v ∈ W , W′⟨Du, v ⟩W = α(b)u(b)v(b) .

∀u ∈ W , W′⟨Du, u ⟩W = α(b)|u(b)|2 ≥ 0 .

And , W0 = {u ∈ W : u(b) = 0} .

So, pair (W,W0) satisfies condition (V1). Furthermore, (T1|W , T̃1|W0) = (T1, T̃0) is
trivially a pair of mutually adjoint operators and so it is a pair of mutually adjoint
bijective realisations relative to (T, T̃ ). Since this implies that kerT1 = {0}, (T1, T̃0) is

the only pair of mutually adjoint bijective realisations relative to (T, T̃ ).

Similarly, for α(a) = 0, α(b) < 0, we have (V, Ṽ) = (W0,W).

(V, Ṽ) =

{
(W,W0) ,

(
α(a) = 0 ∧ α(b) ≥ 0) ∨

(
α(a) ≤ 0 ∧ α(b) = 0

)
(W0,W) ,

(
α(a) = 0 ∧ α(b) ≤ 0) ∨

(
α(a) ≥ 0 ∧ α(b) = 0

) .
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Classification 2/8

Kernels : If α(a) = α(b) = 0, then kerT1 = ker T̃1 = {0}, i.e. both equations

(αφ)′ + βφ = 0 and − (αφ)′ + (β + α′)φ = 0

do not have any non-trivial solution in W.

If exactly one of numbers α(a) and α(b) is zero, then from Remark (ii) we have

dim(kerT1) + dim(ker T̃1) = 1 and so one of the dimensions is 0.

Specifically, if α(a) = 0 and α(b) > 0, then (T1, T̃0) is the adjoint pair and so

dim(kerT1) = 0. Hence dim(ker T̃1) = 1.
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Classification 3/8

Case 2: α(a)α(b) < 0 : W0 = {u ∈ W : u(a) = u(b) = 0}
For α(a) > 0 and α(b) < 0. Then for any u ∈ W we have

W′⟨Du, u ⟩W = α(b)|u(b)|2 − α(a)|u(a)|2 ≤ 0 .

Hence, we get (T0, T̃1) = (T1|W0 , T̃1|W) is the only pair of mutually adjoint bijective

realisations relative to (T, T̃ ).

Analogously, for α(a) < 0 and α(b) > 0 we see that (T1, T̃0) is the only pair of mutually

adjoint bijective realisations relative to (T, T̃ ).

Kernels : Although in this case dim(kerT1) + dim(ker T̃1) = 2 , we have only one

bijective realisation. So, for α(a) > 0 we have (dim(kerT1), dim(ker T̃1)) = (2, 0), while

for α(a) < 0 it is (dim(kerT1),dim(ker T̃1)) = (0, 2).

Let α(a) < 0. We have α−1({0}) ̸= ∅.
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Classification 4/8

Case 3: α(a)α(b) > 0 : W0 = {u ∈ W : u(a) = u(b) = 0}, the boundary operator is

W′⟨Du, v ⟩W = α(b)u(b)v(b)− α(a)u(a)v(a) , u, v ∈ W .

Let us define

V :=

{
u ∈ W : u(b) =

√
α(a)

α(b)
u(a)

}
.

For an arbitrary u ∈ V and v ∈ W we have

W′⟨Du, v ⟩W = α(b)u(b)v(b)− α(a)u(a)v(a)

= α(b)

(
u(b)v(b)−

√
α(a)

α(b)
u(a)

√
α(a)

α(b)
v(a)

)

= α(b)u(b)

(
v(b)−

√
α(a)

α(b)
v(a)

)
.

In particular,
(∀u, v ∈ V) W′⟨Du, v ⟩W = 0 ,

implying that (V,V) satisfies condition (V1) and that V ⊆ V [⊥].
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Classification 5/8

Now let v ∈ V [⊥]. Then for any u ∈ V

α(b)u(b)

(
v(b)−

√
α(a)

α(b)
v(a)

)
= 0 .

Since α(b) ̸= 0 and there exists u ∈ V such that u(b) ̸= 0 (e.g. just consider a linear

function), this implies v(b) =
√

α(a)
α(b)

v(a), i.e. v ∈ V.

Therefore, (Tr, T
∗
r ) is indeed a mutually adjoint pair of bijective realisations relative to

(T, T̃ ). It is evident that W0 ⫋ V ⫋W, hence there are infinitely many bijective
realisations.

In this case we have dimkerT1 = dimker T̃ = 1. Implies that the only (non-trivial)

choice is domB = Z = kerT1 and Z̃ = dom T̃1. Then there exists (c+ id) ∈ C \ {0}
such that Bφ = (c+ id)φ̃ (to get bijective realisations).

From the classification theory we have u ∈ W belongs to domTc,d if and only if

Pker T̃1
(T1u) = B(pku)

S.K. Soni (UNIZG) Classification of classical Friedrichs operators : One dimensional scalar case 17/ 23



Classification 5/8

Now let v ∈ V [⊥]. Then for any u ∈ V

α(b)u(b)

(
v(b)−

√
α(a)

α(b)
v(a)

)
= 0 .

Since α(b) ̸= 0 and there exists u ∈ V such that u(b) ̸= 0 (e.g. just consider a linear

function), this implies v(b) =
√

α(a)
α(b)

v(a), i.e. v ∈ V.
Therefore, (Tr, T

∗
r ) is indeed a mutually adjoint pair of bijective realisations relative to

(T, T̃ ). It is evident that W0 ⫋ V ⫋W, hence there are infinitely many bijective
realisations.

In this case we have dimkerT1 = dimker T̃ = 1. Implies that the only (non-trivial)

choice is domB = Z = kerT1 and Z̃ = dom T̃1. Then there exists (c+ id) ∈ C \ {0}
such that Bφ = (c+ id)φ̃ (to get bijective realisations).

From the classification theory we have u ∈ W belongs to domTc,d if and only if

Pker T̃1
(T1u) = B(pku)

S.K. Soni (UNIZG) Classification of classical Friedrichs operators : One dimensional scalar case 17/ 23



Classification 5/8

Now let v ∈ V [⊥]. Then for any u ∈ V

α(b)u(b)

(
v(b)−

√
α(a)

α(b)
v(a)

)
= 0 .

Since α(b) ̸= 0 and there exists u ∈ V such that u(b) ̸= 0 (e.g. just consider a linear

function), this implies v(b) =
√

α(a)
α(b)

v(a), i.e. v ∈ V.
Therefore, (Tr, T

∗
r ) is indeed a mutually adjoint pair of bijective realisations relative to

(T, T̃ ). It is evident that W0 ⫋ V ⫋W, hence there are infinitely many bijective
realisations.

In this case we have dimkerT1 = dimker T̃ = 1. Implies that the only (non-trivial)

choice is domB = Z = kerT1 and Z̃ = dom T̃1. Then there exists (c+ id) ∈ C \ {0}
such that Bφ = (c+ id)φ̃ (to get bijective realisations).

From the classification theory we have u ∈ W belongs to domTc,d if and only if

Pker T̃1
(T1u) = B(pku)

S.K. Soni (UNIZG) Classification of classical Friedrichs operators : One dimensional scalar case 17/ 23



Classification 5/8

Now let v ∈ V [⊥]. Then for any u ∈ V

α(b)u(b)

(
v(b)−

√
α(a)

α(b)
v(a)

)
= 0 .

Since α(b) ̸= 0 and there exists u ∈ V such that u(b) ̸= 0 (e.g. just consider a linear

function), this implies v(b) =
√

α(a)
α(b)

v(a), i.e. v ∈ V.
Therefore, (Tr, T

∗
r ) is indeed a mutually adjoint pair of bijective realisations relative to

(T, T̃ ). It is evident that W0 ⫋ V ⫋W, hence there are infinitely many bijective
realisations.

In this case we have dimkerT1 = dimker T̃ = 1. Implies that the only (non-trivial)

choice is domB = Z = kerT1 and Z̃ = dom T̃1. Then there exists (c+ id) ∈ C \ {0}
such that Bφ = (c+ id)φ̃ (to get bijective realisations).

From the classification theory we have u ∈ W belongs to domTc,d if and only if

Pker T̃1
(T1u) = B(pku)

S.K. Soni (UNIZG) Classification of classical Friedrichs operators : One dimensional scalar case 17/ 23



Classification 6/8

Non-orthogonal projections : For any u ∈ W there exist unique ur ∈ V and uk ∈ kerT1

such that u = ur + uk. Moreover, uk is of the form Cuφ, so using

u(a) = ur(a) + Cuφ(a)

u(b) = ur(b) + Cuφ(b)

and ur(b) =
√

α(a)
α(b)

ur(a). We get

Cu =
u(b)−

√
α(a)
α(b)

u(a)

φ(b)−
√

α(a)
α(b)

φ(a)

Thus, the corresponding non-orthogonal projection pk :W → kerT1 is equal to
pk(u) = Cuφ. Similarly, pk̃ :W → ker T̃1 is given by pk̃(u) = C̃uφ̃, where

C̃u =
u(b)−

√
α(a)
α(b)

u(a)

φ̃(b)−
√

α(a)
α(b)

φ̃(a)
.
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Classification 7/8

Orthogonal projection :

Pker T̃1
(T1u) =

1

∥φ̃∥2 ⟨T1u | φ̃ ⟩φ̃ =
1

∥φ̃∥2 W′⟨Du, φ̃ ⟩W φ̃

=
1

∥φ̃∥2
(
α(b)u(b)φ̃(b)− α(a)u(a)φ̃(a)

)
φ̃ .

So, the equation Pker T̃1
(T1u) = B(pku) becomes,

1

∥φ̃∥2
(
α(b)u(b)φ̃(b)− α(a)u(a)φ̃(a)

)
φ̃ = (c+ id)Cuφ̃ .

Which gives u ∈ W belongs to domTc,d if and only if

[1]

α(b)φ̃(b)

∥φ̃∥2 − (c+ id)

φ(b)−
√

α(a)
α(b)

φ(a)

u(b) =

α(a)φ̃(a)

∥φ̃∥2 −
(c+ id)

√
α(a)
α(b)

φ(b)−
√

α(a)
α(b)

φ(a)

u(a) .

Similarly, u ∈ W is in domT ∗
c,d if and only if

[2]

α(b)φ(b)− ∥φ̃∥2(c− id)

φ̃(b)−
√

α(a)
α(b)

φ̃(a)

u(b) =

α(a)φ(a)− ∥φ̃∥2(c− id)
√

α(a)
α(b)

φ̃(b)−
√

α(a)
α(b)

φ̃(a)

u(a) .
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Classification 8/8

So, the set of all pairs of mutually adjoint bijective realisations relative to (T, T̃ ) is given
by

[3]
{
(Tc,d, T

∗
c,d) : c, d ∈ R2 \ {(0, 0)}

}⋃{
(Tr, T

∗
r )

}
.

Kernels : If minx∈[a,b] |α(x)| > 0, then simply

φ(x) =
1

α(x)
exp

(
−
∫

β(x)

α(x)
dx

)
and φ̃(x) = exp

(∫ β(x)

α(x)
dx

)
.

If α−1({0}) ∩ (a, b) ̸= ∅,

Summary :

α at end-points No. of bij. realisations (V, Ṽ)

α(a)α(b) ≤ 0 1
α(a) ≥ 0 ∧ α(b) ≤ 0 (W0,W)

α(a) ≤ 0 ∧ α(b) ≥ 0 (W,W0)

α(a)α(b) > 0 ∞ [3] (see [1] and [2] )
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Examples

Example 1 : Take the interval Ω := (0, 2) and coefficients α(x) = 1−x and β = 1. Then

Tφ = ((1− x)φ)′ + φ

and
T̃φ = −((1− x)φ)′ .

Here 2ℜβ + α′ = 2− 1 = 1 > 0 on (0, 2), meaning that (T, T̃ ) is a pair of abstract
Friedrichs operators.

Solving on (0, 1) and (1, 2) separately we get that for φ ∈ kerT1 necessarily

φ =

{
c1 , in (0, 1)
c2 , in (1, 2) ,

for some constants c1, c2 ∈ C. We have φ ∈ W. Indeed, it is evident that φ ∈ L2(0, 2),
while for ψ ∈ C∞

c (0, 2) we have∫ 2

0

(1− x)φ(x)ψ′(x) dx =

∫ 1

0

(1− x)φ(x)ψ′(x) dx+

∫ 2

1

(1− x)φ(x)ψ′(x) dx

= c1

∫ 1

0

(1− x)ψ′(x) dx+ c2

∫ 2

1

(1− x)ψ′(x) dx

= c1

∫ 1

0

ψ(x) dx+ c2

∫ 2

1

ψ(x) dx =

∫ 2

0

φ(x)ψ(x) dx .
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Examples

Example 1 : Take the interval Ω := (0, 2) and coefficients α(x) = 1−x and β = 1. Then

Tφ = ((1− x)φ)′ + φ

and
T̃φ = −((1− x)φ)′ .

Here 2ℜβ + α′ = 2− 1 = 1 > 0 on (0, 2), meaning that (T, T̃ ) is a pair of abstract
Friedrichs operators.
Solving on (0, 1) and (1, 2) separately we get that for φ ∈ kerT1 necessarily

φ =

{
c1 , in (0, 1)
c2 , in (1, 2) ,

for some constants c1, c2 ∈ C.

We have φ ∈ W. Indeed, it is evident that φ ∈ L2(0, 2),
while for ψ ∈ C∞
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Examples

This means ((1− x)φ)′ = −φ ∈ L2(0, 2), thus φ ∈ W. Therefore, dimkerT1 = 2 (since
we have two parameters in the definition of φ).

On the other hand, φ̃ ∈ ker T̃1 implies

φ̃(x) =

{
d1
1−x

, x ∈ (0, 1)
d2
1−x

, x ∈ (1, 2) ,

for some constants d1, d2 ∈ C.
But φ̃ ∈ L2(0, 2) if and only if d1 = d2 = 0. Hence, ker T̃1 = {0} and dimker T̃1 = 0,
justifying the results obtained in Case 2.

It is interesting to note that for c1 ̸= c2 we have φ′ /∈ L2(0, 2), because φ′ = (c2 − c1)δ1
(here δ1 is the Dirac measure at 1) and so φ /∈ H1(0, 2). Thus, H1(0, 2) ⫋W.

Moreover, φ̃ ∈ H1
loc([0, 2] \ {1}) for any choice of parameters d1, d2. Indeed, for any

subinterval [c, d] ⊆ [0, 2] \ {1} we have φ̃|(c,d) ∈ H1(c, d). Since φ̃ ̸∈ W this shows that
W is indeed a proper subspace of H1

loc([0, 2] \ {1}), i.e. W ⫋ H1
loc([0, 2] \ {1}).
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And...

...thank you for your attention :)
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