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We consider the Cauchy problem for the Hartree equation with the delta
potential

iut +△u = (w ∗ |u|2)u + δu,
u(0, x) = a(x),

(1)

where u = u(t , x), t ∈ [0,T ), x ∈ R3, w : R3 → R is a given measurable
function and δ denotes the Dirac delta distribution.

The Hartree equation is a semilinear Schrödinger equation with
convolutive nonlinear part in cubic form. It is connected with the quantum
dynamics of large Bose gases.
Well-posedness for (1) holds in the setting of the fractional (singular)
Sobolev spaces H2

α(R3):

iut +△αu = (w ∗ |u|2)u,
u(0, x) = a(x),

(2)

where △α is the fractional Laplacian.
We will see that (1) is well-posed in a H2-based Colombeau algebra, in
which some classical spaces are embedded and then we will connect
Colombeau solution and solution of (2).
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Colombeau–type algebras are motivated by nonlinearities and
singularities appearing in (1). We embed the delta distribution in algebra
of this type, and then the product δu obtains a meaning.
The space of distributions is embedded by taking a convolution with a
mollifier: u 7→ u ∗ ρε = uε. Hence we consider a regularized equation

i(uε)t +△uε − (w ∗ |uε|2)uε = ϕεuε

uε(0, x) = aε(x),
(3)

Regularization offers the possibility to examine convergence of the net of
solutions and we use it to connect the Colombeau solution with the
solution of (2).
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Notation: D(R3) and S(R3) are spaces of smooth functions with compact
support and rapidly decreasing functions, respectively. We denote by
W m,p(R3), 1 ≤ p ≤ ∞, the usual Sobolev space. When p = 2 we use
standard notation W m,2(R3) = Hm(R3) and H∞(R3) =

⋂
s∈R Hs(R3).

Let T > 0. We define EC1,H2([0,T )× R3) the vector space of nets (uε)ε of
functions uε ∈ C([0,T ),H2(R3)) ∩ C1([0,T ),L2(R3)), ε ∈ (0,1), with the
property that there exists N ∈ N such that

max{ sup
t∈[0,T )

∥uε(t)∥H2 , sup
t∈[0,T )

∥∂tuε(t)∥2} = O(ε−N), ε→ 0.

We define NC1,H2([0,T )× R3) as the vector space of nets (uε)ε such that
for every M ∈ N it holds that

max{ sup
t∈[0,T )

∥uε(t)∥H2 , sup
t∈[0,T )

∥∂tuε(t)∥2} = O(εM), ε→ 0, respectively.

We call elements of EC1,H2([0,T )× R3) moderate functions and elements
of NC1,H2([0,T )× R3) negligible functions. The quotient space

GC1,H2([0,T )× R3) = EC1,H2([0,T )× R3)/NC1,H2([0,T )× R3)

is a Colombeau type vector space. This is a multiplicative algebra, since
H2(R3) itself is an algebra.
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The space GH2(R3) = EH2(R3)/NH2(R3) is defined in a similar manner, but
with representatives independent in the time variable t . This space is also an
algebra.

The basic operations of addition, multiplication and differentiation are
done component–wise, that is

u + v = [(uε + vε)ε], u · v = [(uε · vε)ε], ∂αu = [(∂αuε)ε].

We define differentiation in this algebra, although it is not a closed
operation. If u ∈ GC1,H2 , then ∂αx u, |α| ≤ 2 is represented by ∂αx uε which
has moderate growth in L2(R3) and therefore gives rise to an element of
a quotient vector space GC,L2 , defined analogously as GC1,H2 - with the
difference that representatives have bounded growth only in L2–norm, for
any t ∈ [0,T ). We will see that the equation (1) has sense in GC,L2 . Also it
is easily seen that GC1,H2 ⊂ GC,L2 .
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Next we show how to embed spaces of distributions in GC1,H2 .
For that purpose we define a mollifier ρε such that ρε(x) = ε−3ρ( x

ε ), where
ρ ∈ S(R3) satisfies conditions∫

ρ(x)dx = 1,∫
xαρ(x)dx = 0, for all |α| ≥ 1.

The delta function can be embedded in GH2(R3) by convolution with ρε.
Actually, δ ∗ ρε = ρε so ρε itself is a representative of the delta function.
We will prove that in this algebra, one more representative of the delta
function is given by a strict delta net, defined as follows.

Definition

A strict delta net ϕε ∈ D(R3) is a net satisfying
i) supp(ϕε) → {0}, ε→ 0,
ii) limε→0

∫
R3 ϕε(x)dx = 1,

iii)
∫
|ϕε(x)|dx is bounded uniformly in ε.
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A strict delta net can be defined using ρε as ϕε(x) = χ( x√
ε
)ρε(x), where χ is a

cut–off function. Specifically, χ ∈ D(R3), 0 ≤ χ ≤ 1 and χ = 1 on B1(0) (unit
ball with center at the origin) and supp χ ⊂ B2(0).

Theorem

There exists a strict delta net ϕε such that the difference ρε − ϕε belongs to
NH2(R3) and both ρε and ϕε are representatives for the embedded delta
function [(ρε)ε] ∈ GH2(R3).

The product of the embedded delta function in GH2(R3) and an element of
GC1,H2 belongs to GC1,H2 . This is explained by the next theorem.

Theorem

Let u ∈ GC1,H2 and (ρε)ε is the representative of δ in GH2(R3). Then
u · [(ρε)] ∈ GC1,H2 .
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The next theorem explains embedding of functions in the space GC1,H2 .

Theorem

Define the mapping ι : W 1,∞([0,T ),L2(R3)) → GC1,H2([0,T )× R3) by

ι(u) = [(uε)ε]

where

uε(t , x) =
∫
R3

u(t , y)ρε(x − y)dy for any t ∈ [0,T ). (4)

(i) The mapping ι is a linear injection. Restriction of the derivative ∂α, for
any α ∈ N1+3, from GC1,H2 to W 1,∞([0,T ),L2(R3)) is the usual
distributional derivative.

(ii) The same embedding turns C1([0,T ),H∞(R3)) into a subalgebra of
GC1,H2 .
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We introduce two more definitions relevant for equation (1).

Definition

Let u ∈ GC1,H2 with a representative uε ∈ EC1,H2 . Since
uε ∈ C([0,T ),H2(R3)), the function uε(0, ·) is in EH2(R3). Also, if uε ∈ NC1,H2

then uε(0, ·) is in NH2(R3). We define the restriction of u to {0} × R3 as the
class [uε(0, ·)] ∈ GH2(R3).

Definition

We say that a ∈ GH2(R3) is of (ln)j–type, j ∈ (0,1] if it has a representative
aε ∈ EH2(R3) such that

∥aε∥2 = O(lnj ε−1), ε→ 0.

Note that a function a ∈ H∞(R3) is itself a representative in GH2(R3) and this
is an example of a function that is of (ln)j–type for any j ∈ (0,1].
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Next we shortly describe the setting used in [4] for the fractional equation (2).
We define

H2
α(R3) = {ψ ∈ L2(R3)| ψ = ϕλ +

ϕλ(0)

α+
√
λ

4π

Gλ, ϕλ ∈ H2(R3)},

(−△α + λ)ψ = (−△+ λ)ϕλ,

where λ > 0, α > 0 are arbitrary fixed constants and

Gλ(x) :=
e−

√
λ|x|

4π|x |

is the Green’s function for the Laplacian, that is, the distributional solution to
(−△+ λ)Gλ = δ in D′(R3). Note that Gλ ∈ L2(R3).
The operator △α induces the Schrödinger propagator t 7→ eit△α , analogous to
the usual propagator. Norm on H2

α(R3) is given by

∥ψ∥H2
α
= ∥(I −△α)ψ∥2.

For arbitrary ψ = ϕλ + ϕλ(0)
α+

√
λ

4π

Gλ ∈ H2
α(R3) there holds

∥ψ∥H2
α
≈ ∥ϕλ∥H2 .
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A function u is a solution of (2) if u ∈ C(I,H2
α(R3)) for some interval I ⊂ R with

0 ∈ I and the Duhamel’s formula

u(t) = eit△αa − i
∫ t

0
ei(t−s)△α(w ∗ |u(s)|2)u(s)ds (5)

holds. This means that function u is a solution of (2) if u ∈ C(I,H2
α(R3)) is a

fixed point for the map

Φ(u)(t) = eit△αa − i
∫ t

0
ei(t−s)△α(w ∗ |u(s)|2)u(s)ds.

We define the notion of local well – posedness.

Definition

We say that the Cauchy problem (2) is locally well – posed in H2
α(R3) if the

following properties are satisfied
i) For any a ∈ H2

α(R3) there exists T∗,T ∗ ∈ (0,∞] and a unique solution
u ∈ C((−T∗,T ∗),H2

α(R3)) of (5) and (−T∗,T ∗) is the maximal time
interval where the solution is defined.

ii) The blowup alternative holds: if T ∗ <∞ (respectively T∗ <∞) then
limt→T∗ ∥u(t)∥H2

α
= +∞ (resp. limt→T∗ ∥u(t)∥H2

α
= +∞).
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If T ∗ = T∗ = ∞ then the solution is global. If there is local well – posedness
and the solution is global we say that there is global well – posedness of (2).
We analogously define well – posedness in some subspace V of H2

α(R3). We
are interested in connecting the Colombeau solution of (1) and the singular
Sobolev solution of (2). With that purpose, we prove the following theorem.

Theorem

Let w ∈ W 2,p(R3), p > 2 and w is even. The Cauchy problem (2) is locally
well-posed in the space

V = {u ∈ H2(R3),u is odd} ⊂ H2(R3) ∩ H2
α(R3)

and there is also global well – posedness.

Note that on the intersection of spaces H2(R3) and H2
α(R3), the norms ∥ · ∥H2

and ∥ · ∥H2
α

are equivalent and the characterization of this space is that
u ∈ H2(R3) and u(0) = 0. The operator −△α acts as −△ on the space of
H2(R3) functions which vanish at zero.
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Return now to the original equation:

iut +△u − (w ∗ |u|2)u = δu,
u(0, x) = a(x).

(6)

Definition
We say that u ∈ GC1,H2 is a solution of (6) if for an initial condition a, there exist
representatives uε ∈ EC1,H2 and aε ∈ EH2(R3) such that

sup
t∈[0,T )

∥i(uε)t +△uε − (w ∗ |uε|2)uε − ϕεuε∥2 = O(εM), ∀M ∈ N,

uε(0, x) = aε(x) + nε(x),
(7)

where nε ∈ NH2(R3) and ϕε is a strict delta net.

If the above statement holds for some uε then it holds for all representatives of
the class u = [(uε)ε].
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Definition
We say that a solution of (6) is unique if for any two solutions u, v ∈ GC1,H2

there holds supt∈[0,T ) ∥uε − vε∥2 = O(εM), for any M ∈ N.

These definitions justify the use of spaces based on nets

uε ∈ C([0,T ),H2(R3)) ∩ C1([0,T ),L2(R3)), ε ∈ (0,1),

We consider regularized version of (6):

i(uε)t +△uε − (w ∗ |uε|2)uε = ϕεuε

uε(0, x) = aε(x),
(8)

and w ∈ W 2,p(R3) ⊂ L∞(R3) (due to the Sobolev embedding) and
aε ∈ EH2(R3). We also assume that w is even.

Theorem

Let a ∈ GH2(R3) be of ln
1
3 –type. Then for any T > 0 there exists a unique

solution u ∈ GC1,H2 of the equation (6).
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Given the Cauchy problem (2) for a ∈ V = {u ∈ H2(R3),u is odd}, we know
that there is a unique solution u ∈ V . Since H2(R3) ↪→ GH2(R3), for such an
initial condition there is a unique solution of (6) in GC1,H2 , also. This means
there is a representative uε such that

i(uε)t +△uε − (w ∗ |uε|2)uε = ϕεuε

uε(0) = aε,
(9)

for some regularization aε of a.
It does not mean that uε represents u (in order words, the two are not
necessarily the same element of GC1,H2 ), but the following theorem holds.

Theorem

Let a ∈ V and let u be the (fractional) Sobolev solution u ∈ V of (2). Let
[(uε)ε] ∈ GC1,H2([0,T )× R3) be the Colombeau solution of (6). Then
sup[0,T ) ∥uε(t)− u(t)∥2 → 0, ε→ 0.
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