# **Abstract Friedrichs Operators**

# Marko Erceg, Sandeep Kumar Soni

#### Introduction

The concept of positive symmetric systems was introduced by Friedrichs, which are today customarily referred to as the Friedrichs systems. More precisely, for  $d, r \in \mathbb{N}$ ,  $\Omega \subseteq \mathbb{R}^d$  open and bounded with Lipschitz boundary,  $\mathbf{A}_k \in W^{1,\infty}(\Omega; \mathrm{M}_r(\mathbb{C}))$ ,  $k \in \{1,\ldots,d\}$ , and  $\mathbf{B} \in L^{\infty}(\Omega; \mathrm{M}_r(\mathbb{C}))$  satisfying (a.e. on  $\Omega$ ):

$$\mathbf{A}_k = \mathbf{A}_k^*; \tag{F1}$$

$$\exists \mu_0 > 0 \quad \mathbf{B} + \mathbf{B}^* + \sum_{k=1}^a \partial_k \mathbf{A}_k \ge \mu_0 \mathbf{I}.$$
 (F2)

Define  $\mathcal{L}, \widetilde{\mathcal{L}}: L^2(\Omega)^r \to \mathcal{D}'(\Omega)^r$  by

$$\begin{split} \mathcal{L}\mathbf{u} &:= \sum_{k=1}^d \partial_k(\mathbf{A}_k\mathbf{u}) + \mathbf{B}\mathbf{u} \,, \\ \widetilde{\mathcal{L}}\mathbf{u} &:= -\sum_{k=1}^d \partial_k(\mathbf{A}_k\mathbf{u}) + \Big(\mathbf{B}^* + \sum_{k=1}^d \partial_k\mathbf{A}_k\Big)\mathbf{u} \,, \end{split}$$

is called Classical Friedrichs System.

Aim: to impose boundary conditions such that for any  $f \in L^2(\Omega)^r$  we have a unique solution of  $\mathcal{L}u = f$ .

Gain: many important (semi)linear equations of mathematical physics can be written in the form of classical Friedrichs operators.

Cassical theory in short: Unified treatment of linear hyperbolic systems like Maxwell's, Dirac's, or higher order equations (e.g. the wave equation).

- treating the equations of mixed type, such as the Tricomi equation:

$$y\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0;$$

- unified treatment of equations and systems of different type;
- more recently: better numerical properties.

## **Shortcommings:**

- no satisfactory well-posedness result,
- no intrinsic (unique) way to pose boundary conditions.

## development of the abstract theory

 $(\mathcal{H}, \langle \cdot \mid \cdot \rangle)$  complex Hilbert space  $(\mathcal{H}' \equiv \mathcal{H}), \| \cdot \| := \sqrt{\langle \cdot \mid \cdot \rangle},$   $\mathcal{D} \subseteq \mathcal{H}$  dense subspace. Let Let  $T, \widetilde{T} : \mathcal{D} \to \mathcal{H}$ . The pair  $(T, \widetilde{T})$  is called a joint pair of abstract Friedrichs operators if the following holds:

$$(\forall \varphi, \psi \in \mathcal{D}) \qquad \langle T\varphi \mid \psi \rangle = \langle \varphi \mid \widetilde{T}\psi \rangle; \tag{T1}$$

$$(\exists c > 0)(\forall \varphi \in \mathcal{D}) \qquad \|(T + \widetilde{T})\varphi\| \leqslant c\|\varphi\|; \tag{T2}$$

$$(\exists \mu_0 > 0)(\forall \varphi \in \mathcal{D}) \qquad \langle (T + \widetilde{T})\varphi \mid \varphi \rangle \geqslant \mu_0 \|\varphi\|^2.$$
 (T3)

Note: Classical is abstract.

# Characterisation of joint pair of abstract Friedrichs operators

## Lemma

$$(T1) - (T3) \iff \begin{cases} \overline{T} \subseteq \widetilde{T}^* & \& \quad \widetilde{T} \subseteq T^*; \\ \overline{T + \widetilde{T}} \text{ bounded self-adjoint in } \mathcal{H} \\ \text{with strictly positive bottom;} \\ \overline{\dim T} = \overline{\dim \widetilde{T}} & \& \quad \overline{\dim T}^* = \overline{\dim T}^*. \end{cases}$$

By (T1), T and  $\widetilde{T}$  are closable. By (T2),  $T+\widetilde{T}$  is a bounded operator, so the graph norms  $\|\cdot\|_T$  and  $\|\cdot\|_{\widetilde{T}}$  are equivalent.

$$\operatorname{dom} \overline{T} = \operatorname{dom} \overline{\widetilde{T}} =: \mathcal{W}_0,$$

$$\operatorname{dom} T^* = \operatorname{dom} \widetilde{T}^* =: \mathcal{W},$$

$$(1)$$

and  $(\overline{T+\widetilde{T}})|_{\mathcal{W}}=\widetilde{T}^*+T^*$ . So,  $(\overline{T},\overline{\widetilde{T}})$  is also a pair of abstract Friedrichs operators.

**Notation:** 

$$T_0 := \overline{T}, \quad \widetilde{T}_0 := \overline{\widetilde{T}}, \quad T_1 := \widetilde{T}^*, \quad \widetilde{T}_1 := T^*.$$

Therefore, we have

$$T_0 \subseteq T_1 \quad \text{and} \quad \widetilde{T}_0 \subseteq \widetilde{T}_1 \ .$$
 (2)

 $(\mathcal{W}, \|\cdot\|_T)$  is the *graph space*.  $\mathcal{W}_0$  is a closed subspace of the graph space  $\mathcal{W}$ .

For,  $\mathcal{D}=C_c^\infty(\Omega)$ ,  $\mathcal{H}=L^2(\Omega)$  and a certain choice of operators it could be that  $\mathcal{W}$  and  $\mathcal{W}_0$  are Sobolev spaces  $H^1(\Omega)$  and  $H^1_0(\Omega)$ , respectively.

Boundary map (form ):  $D: \mathcal{W} \to \mathcal{W}'$ ,

$$[u \mid v] := \mathcal{W}(Du, v)_{\mathcal{W}} := \langle T_1 u \mid v \rangle - \langle u \mid \widetilde{T}_1 v \rangle.$$

Let a pair of operators  $(T,\widetilde{T})$  on  $\mathcal{H}$  satisfies (T1)–(T2). Then D is continuous and satisfies

i)  $(\forall u, v \in \mathcal{W})$   $([u \mid v] = \overline{[v \mid u]})$ , ii)  $\ker D = \mathcal{W}_0$ .

**Remark**:  $(W, [\cdot | \cdot])$  is indefinite inner product space.

# Well-posedness Result

For  $V, \widetilde{V} \subseteq W$  we introduce two conditions:

(V1) 
$$\begin{aligned} (\forall u \in \mathcal{V}) & [u \mid u] \geqslant 0 \\ (\forall v \in \widetilde{\mathcal{V}}) & [v \mid v] \leqslant 0 \end{aligned}$$

(V2).  $\mathcal{V}^{[\perp]} = \widetilde{\mathcal{V}}, \ \widetilde{\mathcal{V}}^{[\perp]} = \mathcal{V}$ 

Theorem[Ern, Guermond, Caplain, 2007]

# Existence, Multiplicity and Classification

(T1)–(T3) + (V1)–(V2)  $\Longrightarrow T_1|_{\mathcal{V}}, T_1|_{\widetilde{\mathcal{V}}}$  bijective realisations.

We seek for bijective closed operators  $S \equiv \widetilde{T}^*|_{\mathcal{V}}$  such that

$$\overline{T} \subseteq S \subseteq \widetilde{T}^*$$
,

and thus also  $S^*$  is bijective and  $\overline{\widetilde{T}} \subseteq S^* \subseteq T^*$ . We call  $(S, S^*)$  an adjoint pair of bijective realisations relative to  $(T, \widetilde{T})$ .

#### Theorem[Antonić, Erceg, Michelangeli, 2017] Let $(T, \widetilde{T})$ satisfies (T1)–(T3).

(i) **Existence**: There exists an adjoint pair of bijective realisations with signed boundary map relative to  $(T, \widetilde{T})$ .

(ii) Multiplicity:

$$\ker \widetilde{T}^* \neq \{0\}$$
  $\Longrightarrow$  uncountably many adjoint pairs of bijective realisations with signed boundary map 
$$\ker \widetilde{T}^* = \{0\}$$
  $\Longrightarrow$  only one adjoint pair of bijective realisations with signed boundary map

Classification: For  $(T, \widetilde{T})$  satisfying (T1)–(T3) we have

$$\overline{T} \subseteq \widetilde{T}^*$$
 and  $\overline{\widetilde{T}} \subseteq T^*$ ,

while by the previous theorem there exists closed  $T_{\rm r}$  such that

- $\overline{T} \subseteq T_{\mathbf{r}} \subseteq \widetilde{T}^* \ (\iff \overline{\widetilde{T}} \subseteq T_{\mathbf{r}}^* \subseteq T^*),$
- $T_{\rm r}: {\rm dom}\, T_{\rm r} \to \mathcal{H}$  bijection,
- $(T_{\rm r})^{-1}: \mathcal{H} \to \operatorname{dom} T_{\rm r}$  bounded.

Thus, we can apply Grubb's universal classification theory (classification of dual (adjoint) pairs).

Result: complete classification of all adjoint pairs of bijective realisations with signed boundary map.

To do: apply this result to general classical Friedrichs operators from the beginning.

## Decomposition of the graph space

# Theorem[Erceg, Soni, 2022]

 $(T_0,\widetilde{T}_0)$  is a joint pair of closed abstract Friedrichs operators then

$$W = W_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1$$
.

**Corollary:**  $\left(T_1|_{\mathcal{W}_0\dotplus \ker \widetilde{T}_1}, \widetilde{T}_1|_{\mathcal{W}_0\dotplus \ker T_1}\right)$  is a pair of mutually adjoint pair of bijective realisations relative to  $(T, \widetilde{T})$ .

- A sketch for the proof of the theorem is: •  $W_0 \dotplus \ker T_1 \dotplus \ker \widetilde{T}_1$  is direct and closed in W.
- For any bijective realisation  $T_{\rm r}$ ,

$$W = W_0 \dotplus T_r^{-1}(\ker \widetilde{T}_1) \dotplus \ker T_1 = W_0 \dotplus (T_r^*)^{-1}(\ker T_1) \dotplus \ker \widetilde{T}_1.$$

• 
$$\mathcal{W} = \left( \mathcal{W}_0 \dot{+} \ker T_1 \dot{+} \ker \widetilde{T}_1 \right)^{[\perp][\perp]}$$
.

Using the above theorem we now find all admissible boundary conditions for 1-d scalar case with variable coefficients.

# One-dimensional (d = 1) Scalar (r = 1) Case

$$\Omega=(a,b),\,a< b,\,\mathcal{D}=C_c^\infty(a,b) \text{ and } \mathcal{H}=L^2(a,b).\ T,\widetilde{T}:\mathcal{D}\to\mathcal{H}:$$

$$T\varphi := (\alpha\varphi)' + \beta\varphi \quad \text{and} \quad \widetilde{T}\varphi := -(\alpha\varphi)' + (\overline{\beta} + \alpha')\varphi \ .$$
 Here  $\alpha \in W^{1,\infty}((\alpha,b),\mathbb{D}) \ \beta \in L^{\infty}((\alpha,b),\mathbb{C}) \ \text{and for some } \mu > 0$ 

Here  $\alpha \in W^{1,\infty}((a,b);\mathbb{R})$ ,  $\beta \in L^{\infty}((a,b);\mathbb{C})$  and for some  $\mu_0 > 0$ ,  $2\Re\beta + \alpha' \geq 2\mu_0 > 0$ .

## The graph space:

$$W = \{ u \in \mathcal{H} : (\alpha u)' \in \mathcal{H} \}, \quad ||u||_{\mathcal{W}} := ||u|| + ||(\alpha u)'||.$$

Equivalently,

$$u \in \mathcal{W} \iff \alpha u \in H^1(a,b)$$
.

So, by Sobolev embedding  $\alpha u \in C(a,b)$ . Implies the evaluation  $(\alpha u)(x)$  is well defined. However, u is not necessarily continuous so  $\alpha(x)u(x)$  is not meaningful.



**Lemma** Let  $I := [a, b] \setminus \alpha^{-1}(\{0\})$ . Then  $\mathcal{W} \subseteq H^1_{loc}(I)$ , i.e. for any  $u \in \mathcal{W}$  and  $[c, d] \subseteq I$ , c < d, we have  $u|_{[c,d]} \in H^1(c,d)$ .

The boundary operator can be written explicitly as

$$\mathcal{W}\langle Du, v \rangle_{\mathcal{W}} = (\alpha u \overline{v})(b) - (\alpha u \overline{v})(a), \quad u, v \in \mathcal{W},$$

where we define

$$(\alpha u \overline{v})(x) := \left\{ \begin{array}{l} 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0 \end{array}, \begin{array}{l} \alpha(x) u(x) \overline{v(x)} = 0 \\ \alpha(x) u(x) \overline{v(x)} = 0$$

The domain of the closures  $T_0$  and  $\widetilde{T}_0$  satisfies  $W_0 = \operatorname{cl}_{\mathcal{W}} C_c^{\infty}(\mathbb{R})$ , is characterised as

Lemma

$$\mathcal{W}_0 = \left\{ u \in \mathcal{W} : (\alpha u)(a) = (\alpha u)(b) = 0 \right\}.$$

**Lemma** The codimension of the quotient space  $W/W_0$  is

$$= \begin{cases} 2 , \alpha(a)\alpha(b) \neq 0 , \\ 1 , (\alpha(a) = 0 \land \alpha(b) \neq 0) \lor (\alpha(a) \neq 0 \land \alpha(b) = 0) \\ 0 , \alpha(a) = \alpha(b) = 0 . \end{cases}$$

By the decomposition we have

$$\dim(\ker T_1) + \dim(\ker \widetilde{T}_1) = \dim \mathcal{W}/\mathcal{W}_0.$$

Thus, when  $\alpha(a)\alpha(b)=0$  there is only one bijective realisation of  $T_0$ . In case  $\alpha(a)\alpha(b)\neq 0$  there are infinitely many bijective realisations if and only if  $\dim(\ker T_1)=\dim(\ker \widetilde{T}_1)$ .

The only interesting case is, when  $\alpha(a) > 0$ ,  $\alpha(b) > 0$ . In this case we have,

 $u \in \mathcal{W}$  belongs to dom  $T_{c,d}$  if and only if

$$[1] \left( \frac{\alpha(b)\overline{\tilde{\varphi}(b)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)} \right) u(b)$$

$$= \left( \frac{\alpha(a)\overline{\tilde{\varphi}(a)}}{\|\tilde{\varphi}\|^2} - \frac{(c+id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)}{\varphi(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\varphi(a)} \right) u(a)$$

Similarly,  $u \in \mathcal{W}$  is in dom  $T_{c,d}^*$  if and only if

$$[2] \left( \alpha(b)\overline{\varphi(b)} - \frac{\|\tilde{\varphi}\|^2(c - id)}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\tilde{\varphi}(a)} \right) u(b)$$

$$= \left( \alpha(a)\overline{\varphi(a)} - \frac{\|\tilde{\varphi}\|^2(c - id)\sqrt{\frac{\alpha(a)}{\alpha(b)}}}{\tilde{\varphi}(b) - \sqrt{\frac{\alpha(a)}{\alpha(b)}}\tilde{\varphi}(a)} \right) u(a) .$$

So, the set of all pairs of mutually adjoint bijective realisations relative to  $(T,\widetilde{T})$  is given by

[3] 
$$\left\{ (T_{c,d}, T_{c,d}^*) : c, d \in \mathbb{R}^2 \setminus \{(0,0)\} \right\} \bigcup \left\{ (T_{r}, T_{r}^*) \right\}.$$

**Summary:** 

| $\alpha$ at end-points     | No. of bij. realis. | $(\mathcal{V},\widetilde{\mathcal{V}})$                                                                                                             |
|----------------------------|---------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| $\alpha(a)\alpha(b) \le 0$ | 1                   | $\frac{\alpha(a) \ge 0 \land \alpha(b) \le 0 \ (\mathcal{W}_0, \mathcal{W})}{\alpha(a) \le 0 \land \alpha(b) \ge 0 \ (\mathcal{W}, \mathcal{W}_0)}$ |
| $\alpha(a)\alpha(b) > 0$   | $\infty$            | [3] (see [1] and [2] )                                                                                                                              |

# Acknowledgements

This work is supported by Croatian Science Foundation under the project IP-2018-01-2449 MiTPDE.

## References

[1] K. O. Friedrichs: *Symmetric positive linear differential equations*, Commun. Pure Appl. Math. **11** (1958) 333–418.

[2] A. Ern, J.-L. Guermond, G. Caplain: An intrinsic criterion for the bijectivity of Hilbert operators related to Friedrichs' systems, Comm. Partial Diff. Eq. **32** (2007) 317–341.

[3] G. Grubb: A characterization of the non-local boundary value problems associated with an elliptic operator, Ann. Scuola Norm. Sup. Pisa **22** (1968) 425–513.

[4] N. Antonić, K. Burazin: *Intrinsic boundary conditions for Friedrichs systems*, Comm. Partial Diff. Eq. **35** (2010) 1690–1715.

[5] N. Antonić, M.E., A. Michelangeli: Friedrichs systems in a Hilbert space framework: solvability and multiplicity, J. Differential Equations 263 (2017) 8264-8294.

[6] M. Erceg, S. K. Soni: Classification of classical Friedrichs differential operators: One-dimensional scalar case, Communications on Pure and Applied Analysis, 2022, 21 (10): 3499-3527. doi: 10.3934/cpaa.2022112