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Introduction

2
loc

If we have u,, — 0 in L2 _(Q), Q € R? open, what we can say about |u,,|??
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Introduction

2
loc

If we have u,, — 0 in L2 (Q), Q C R? open, what we can say about |u,|??

Example:
2minx L1200
up(x) =€ —=0,
but
lun(z)] =1 = wu,»0 in LZ_(R).

loc
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Introduction

If we have u,, — 0in L2 (), © C R open, what we can say about |u,|*?
Example:

up () = e%mxﬁ 0,
but

lun(z)| =1 = wu, =0 in LI (R).

loc

It is bounded in L}

loc(§2) = M(Q) = (Cc())', so
[ |2 v

v is called the defect measure.

Of course, we have

L2
Uy =80 < v=20.
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Introduction

2
loc

If we have u,, — 0 in L2 (Q), Q C R? open, what we can say about |u,|??

Example:
2minx L1200
up(x) =€ —=0,
but
lun(z)] =1 = wu,»0 in LZ_(R).

loc

It is bounded in Li _(2) <= M(Q2) = (C.(2))’, so

loc
k%
[ |2 v
v is called the defect measure.

Of course, we have

L2
Uy =80 < v=20.

If the defect measure is not trivial we need another objects to determine all the
properties of the sequence:

@ H-measures

@ semiclassical measures

o ...
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Outline

@ H-measures and semiclassical measures

© One-scale H-measures

© One-scale H-distributions

@ Multi-scale problems
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Outline

@ H-measures and semiclassical measures
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H-measures

Q C R? open.
Theorem (Tartar, 1990)

If uy, — 0 in L2

loc

(), then there exist a subsequence (/) and
pwr € M(Q x ST such that for any ©1,ps € C.(Q) and 1 € C(S41)

. — T 6 _
lin | (1w ) (€)oon) O (157) 6 = prr, 0102 84

n'

(Unbounded) Radon measure pupr we call the H-measure corresponding to the
(sub)sequence (uy,).

Notation:
= (‘rlvx27"'7xd) € Q7 5 = (§1a§27~--7§d) € R
i(€) = [ra €™ u(x) dx
a-b= Zl La'b’ (a,b e C")
(-, ) sesquilinear dual product

M(X) = (Ce(X))",  (pBP)(x,£) = w(x)1(€)
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H-measures

Q C R? open.

Theorem (Tartar, 1990)

If w, — 0 in L2 (), then there exist a subsequence (u,/) and

pE € M(Q x S971) such that for any @1, p2 € C.(Q) and ¢ € C(S?1)

—_—

i | (oruar )€ €0 () d€ = (s 12 B ).

n' JRd

(Unbounded) Radon measure pg; we call the H-measure corresponding to the
(sub)sequence (uy,).

L2
Up—250 <= pug =0.
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Semiclassical measures

Theorem (Gérard, 1991)

If up, = 0in L2 _(Q), w, — 0T, then there exist a subsequence (u,) and
plén) e M(Q x RY) such that for any o1, ps € C2(Q) and ¥ € S(RY)

lin | @1 (&) Pzt (O (wn€) d€ = (uer), o102 W)

n’ RA

(Unbounded) measure ug‘g"') we call the semiclassical measure with characteristic
length (w,,) corresponding to the (sub)sequence ().
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Semiclassical measures

Theorem (Gérard, 1991)

If up, = 0in L2 _(Q), w, — 0T, then there exist a subsequence (u,) and
plén) e M(Q x RY) such that for any o1, ps € C2(Q) and ¥ € S(RY)

lim [ Gt ()72t (O (wnt) d€ = (ulew), 015, BY) .

n’ RA

(Unbounded) measure ug‘g”') we call the semiclassical measure with characteristic
length (w,,) corresponding to the (sub)sequence ().

2
unL& 0 —— ,ug‘/;n) =0 & (uy) is (wy) — oscillatory .
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Semiclassical measures

Theorem (Gérard, 1991)

If up, = 0in L2 _(Q), w, — 0T, then there exist a subsequence (u,) and
ug‘g"’) € M(Q x R%) such that for any @1, s € C(Q) and ¢ € S(R?)

lim [ Gt ()72t (O (wnt) d€ = (ulew), 015, BY) .

n’ RA

(Unbounded) measure ,ug‘g”') we call the semiclassical measure with characteristic

length (w,,) corresponding to the (sub)sequence ().

Definition

(un) is (wn )-oscillatory if
(Vo € CX(Q) limpeo limsup, f\ﬂ;wi |@\n(£)|2d£ =0.

Theorem

L2
Up—28 0 = p@) =0 & (uy) is (wn) — oscillatory .
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Example 1: Oscillations - one characteristic length

a>0,keZ\ {0},

o L
Up (x) 1= 2mkx _Leev oy 5 00,

but
lun(x)| =1 = u, =0 in L% (RY).

loc
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Example 1: Oscillations - one characteristic length

a>0,keZ\ {0},

o L
Up (x) 1= 2mkx _Leev oy 5 00,

but
lun(x)| =1 = u, =0 in L% (RY).

loc

V=
HH = AN 6%
do lim, n®w, =0
“g‘gn) = AKX ¢ dek 5 lim,, n%w, =c € <0a OO>
0o , lim,, n%w,, = 00
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Example 1: Oscillations - one characteristic length

a>0,keZ\ {0},

2
_ 2min“k-x Lioe

Up(Xx) :=e —% 0, n— 00,
but
lup(x) =1 = wu, »0 in leoc(Rd).
v=A
HH = AN 6%
do lim,, n%w,, =0
,ug‘g") =AK< 6 , lim,n%, =ce (0,00)
0o , lim,, n%w,, = 00
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Example 1: Oscillations - one characteristic length

a>0,keZ\ {0},

in®k-x Live
Uy (x) 1= 2TRx e gy 00,

but
lun(x)| =1 = u, =0 in L% (RY).

loc

v=2A
HH = AKX 5ﬁ
do lim,, n%w,, =0
/j’ggn) = )\ ‘X 6ck 9 hlnn, nawn, =cc <O, OO>
0 ’ hmn nawn = 00

(ny p R ) = <u§°:">,som(|j|)>
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Example 1: Oscillations - one characteristic length

a>0,keZ\ {0},

o L
Up (x) 1= 2mkx _Leev oy 5 00,

but
lun(x)| =1 = u, =0 in L% (RY).

loc

v=A
HH = AN 6%
b lim, n%w, =0
,ug‘g") =AK< 6 , lim,n%, =ce (0,00)
0o , lim,, n%w,, = 00

(Q) is (wn)-oscillatory and ,ugﬁ")(Q x {0}) =0, then u =0 and

PoT2
Ifu, — win L,

(po, p W) = <u§“§"),¢®¢(|—:|)> .
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Example 1: Oscillations - one characteristic length

a>0,keZ\ {0},

o L
Up (x) 1= 2mkx _Leev oy 5 00,

but
lun(x)| =1 = u, =0 in L% (RY).

loc

v=A
HH = AN 6%
b lim, n%w, =0
,ug‘g") =AK< 6 , lim,n%, =ce (0,00)
0o , lim,, n%w,, = 00

() is (wy,)-oscillatory and ,u,gf")(Q x {0}) =0, then uw = 0 and

PoT2
Ifu, — win L,

(po, p W) = <u§“§"),¢®¢(|—:|)> .
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(wp,)-concentrating property

Definition

(un,) is (wp)-oscillatory if

(Ve C(@)  limpsos limsup,, fi s n |57 (€) d€ = 0.
(un) is (wp)-concentrating if ’

(Vp € GF(2))  limp o mnsup, flgc |G (€)|2d€ = 0.
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(wp,)-concentrating property

Definition

(un,) is (wp)-oscillatory if

(Ve C(@)  limpsos limsup,, fi s n |57 (€) d€ = 0.
(un) is (wp)-concentrating if ’

(Vp € GF(2))  limp o mnsup, flgc |G (€)|2d€ = 0.

() wn-concentrating < p“n)(Q x {0}) =0.
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(wp,)-concentrating property

Definition

(un) is (wn )-oscillatory if

(V€ CX(Q))  limpsoo limsup, [ s n |57 (€)° d€ = 0.
(up) is (wn)-concentrating if ’

(Vo € C2(Q)) limpooe limsup, fig e, |5 (€)[2d€ = 0.

() wn-concentrating < p“n)(Q x {0}) =0.

If up, — win L2 _(Q) is (wy)-oscillatory and (w.,)-concentrating, then u =0 and

(e, p R Y) = <u§°§") som/z(l—:')> .
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For an arbitrary bounded sequence (u,,) in L3

i .(£2) is there a characteristic length
wpn — 07 such that (uy,) is

o (wy,)-oscillatory?

o (wy,)-concentrating?

@ both (wy)-oscillatory and (wy, )-concentrating?
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For an arbitrary bounded sequence (u,,) in L3

i .(£2) is there a characteristic length
wpn — 07 such that (uy,) is

o (wy,)-oscillatory?

o (wy,)-concentrating?

@ both (wy)-oscillatory and (wy, )-concentrating?

» M.E., M. Lazar: Characteristic scales of bounded L? sequences, Asymptotic
Analysis 109(3-4) (2018) 171-192.
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Example 2: Oscillations - two characteristic length

0<a<p kseZl\ {0},

2
2min®k-x_Ploc

up(Xx) :=e —50, n— o0
. 1.2
Un(x) 1= e2min’sx Zloec gy g
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Example 2: Oscillations - two characteristic length

0<a<p kseZl\ {0},

2
2min®k-x_Ploc

up(Xx) :=e —50, n— o0
. 1.2
Un(x) 1= e2min’sx Zloec gy g

7554 (uf‘g’")) is H-measure (semiclassical measure with characteristic length (wy,),

wy, — 0T) associated to (u, + vy,).

pH:A&(dﬁ +5ﬁ)
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Example 2: Oscillations - two characteristic length

0<a<p kseZl\ {0},

un(x) =€
Up(X) :

o (&)
wy, — 0T) associated to (u, + vy,).

(605 + 60) )

plen) = AR do )
5ck )

0 ;

M. Erceg (UNIZG)

in B
_ 6271'171

2

2min®k-x_Ploc

—=0, n— o0

2
s$-X Lloc

—=0, n—o0

is H-measure (semiclassical measure with characteristic length (w,,),

lim,, n?w,, =0
lim, n®w, = c € (0,0)
lim,, nfw, = co & lim, n%w, =0
lim,, n®w,, = ¢ € {0, 0)
lim,, n“w,, = 00

One-scale H-distributions



Outline

© One-scale H-measures
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Ko,00(R?) is a compactification of RZ := R\ {0} homeomorphic to a spherical

layer (i.e. an annulus in R?):

2o

M. Erceg (UNIZG)
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Precise description of K o (R%) 1/2

For fixed rg > 0 let us define r; = —22 and denote by

Al0,r1,1] == {c eRe:r <[] < 1}

closed d-dimensional spherical layer equipped with the standard topology
(inherited from RY).

We want to construct a homeomorphism 7 : R — Int A[0, 74, 1].
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Precise description of K o (R?) 2/2

From the previous construction we get that 7 : R — Int A[0,71, 1] is given by

£

(e = .
€]
€+ ()
and (A[0,71,1],J) is a compactification of R.
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Precise description of Ky (RY) 2/2

From the previous construction we get that 7 : R — Int A[0,71, 1] is given by
3
MGE _
€]
&P + ()
and (A[0,71,1], ) is a compactification of RY.

9

Lemma

For ¢ € C(R%) we have ¢ € C(Ko oo (R?)) iff there exist 1o, 1o € C(ST71) such
that

v(©) ~vo(75r) 0. lel=0.

9O —vs (5) 2 0, Il > 0.

i) S(RY) — C(Ko,o(R?Y)), and
i) {(57) + ¥ €C(81)} = C(Ko,w(RY).

M. Erceg (UNIZG)
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One-scale H-measures

Theorem (Tartar, 2009)

If up, = 0in L3 _(Q), w, — 0T, then there exist a subsequence (u,) and

ug‘;h;) € M(Q x Ko o (R?)) such that for any ¢1,p2 € C.(Q) and

% € C(Ko,0(RY))

— T —

lim | (1) () (Paun ) ()Y (wn€) dé = (uSsi o152 B ) .
Rd

n’

(Unbounded) Radon measure u( ») we call the one-scale H-measure with
characteristic length (wy,) corresponding to the (sub)sequence (u,).

Generalisation of both H-measures and semiclassical measures.

» L. Tartar: The general theory of homogenization: A personalized
introduction, Springer (2009).
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Some properties of fi,sp

:u(()sH)_O — ,UH:O

pSl =0 = pl =0

M((JSH)(Q X Yoo) =0 <= (uy) is (w,) — oscillatory

uosH (Q x Xo) =0 < (uy) is (w,) — concentrating

unﬂo = ,ul()SH) =0
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Example 1 revisited

Un(X) 627rzn k-x ,
HH = AKX 6T
60 B 11mn nawn = 0
pr) = ARS G, limy, n®w, = ¢ € (0,00)
O B hmn ’I’Z,awn = 0
60|% ) llmn ’]’Lawn = 0
Cod = AR du . lim,nw, = c € (0,00)
o lim,, n%w,, = 00
oo [kl

One-scale H-distributions
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Example 2 - revisited

2mwin“k- 2mins-x

up(x) =e X up(x)=e
associated objects to (u, + v,,):

MH:A&(% +5§)

280 , lim,, nfw, = 0
(0o + dcs) lim,, nPw, = c € (0, 00)
,ug‘g’“) =KX do , lim, nfw, = co & lim, n®w, =0
Ock , lim,, n%w,, = ¢ € (0, c0)
0 , lim,, n%w,, = 00
(50ﬁ + §0ﬁ) ) lim,, nPw, =0
(50ﬁ +des) lim, n®w, = c € (0,0)
ugﬁgl) =KX (50% + 6@@) , lim, nfw, = co & lim, n®w, =0
(6ek + 5()0%) ) lim,, n%w,, = ¢ € (0, 00)
(6ooﬁ + 500‘%‘) , lim,, n®w,, = oo
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Alternative proof (Antoni¢, E., Lazar)

o Cantor diagonal procedure (separability)
@ commutation lemma

@ a variant of the kernel lemma

Lemma

Let X and Y be two Hausdorff second countable topological manifolds (with or
without a boundary), and let B be a non-negative continuous bilinear form on
C.(X) x C.(Y). Then there exists a Radon measure ;1 € M(X x Y') such that

(Vf € Ce(X))(Vg € Ce(Y)) B(f,9) = (u, fNWg) .

Furthermore, the above remains valid if we replace C. by Cy, and M by M, (the
space of bounded Radon measures, i.e. the dual of Banach space Cy).

o’

» N. Antoni¢, M.E., M. Lazar: Localisation principle for one-scale H-measures,
Journal of Functional Analysis 272 (2017) 3410-3454.
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Localisation principle

Let Q C R open, m € N, u,, — 0in L2 (£;C") and

loc
§ oy (A%u,) =1, inQ,
0| |<m

where
° ¢, =0T
o A> € C(;M,(C))

o (Vo eCx(Q) ﬁ —0 in LXR%LCT) ()

Theorem (Antoni¢, E., Lazar, 2017)

Under previous assumptions, /,Lgss’}} associated to (u,) satisfies
Piply =0,
where
é-a
p1(x,€) = Y (2ﬂi)'“'mAa(X)-
USTEAD

M. Erceg (UNIZG) One-scale H-distributions



Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
{ U}L + €n0, (alu}l) = fi

ui + €n 0, (agui) = f’I’QL

(©2; C?) satisfies

where g, — 0T, f,, := (f}, f2) satisfies (%), and a1, a2 € C(Q;R), a1,az # 0
everywhere.
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
{ U}L + €n0, (alu}l) = fi

ui + €n 0, (agui) = f’I’ZL

(©2; C?) satisfies

where g, — 0T, f,, := (f}, f2) satisfies (%), and a1, a2 € C(Q;R), a1,az # 0
everywhere.

By the localisation principle for one-scale H-measure g, with characteristic
length (e,,) associated to (u,) we get the relation

1 Jr o 2mi&1 | ai(x) 0O 2y [0 0 _—
(1+|€ [0 1]+1+|£|{ 0 O]+1+|§| [0 a2(x)}>u1sﬂ—07
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
uiz + €10z, (alu}z) = f%
u721 + €n 0, (azu%) = erL

(©2; C?) satisfies
where g, — 07, f, := (fL, f2) satisfies (%), and a1,a2 € C(;R), a1, a2 # 0

everywhere.

By the localisation principle for one-scale H-measure pt, 5 with characteristic
length (e,,) associated to (u,) we get the relation

1 1 0], 2m& [ai(x) 0] 27i& [0 0 .
(1+|€ [0 1]+1+|£|{ 0 0}+1+|§| [0 a2(x):|)/'1’15H07

whose (1,1) component reads

1 216y > 11
+1 a1 (x vsg =0,
<1+|£| g 09 ) Hont

hence . ¢
11 1 11
T e MosH = 0, HosaH = 0.
1+ (g 1+ [g] e
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
ul + €n811(a1u1) = f1
u +5n812(a2u )= f2

(©2; C?) satisfies
where g, — 07, f, := (fL, f2) satisfies (%), and a1,a2 € C(;R), a1, a2 # 0

everywhere.

By the localisation principle for one-scale H-measure pt, 5 with characteristic
length (e,,) associated to (u,) we get the relation

1 1 0], 2m& [ai(x) 0] 27i& [0 0 .
(1+|€ [0 1]+1+|£|{ 0 0}+1+|§| [0 a2(x):|)/'1’15H07

whose (1,1) component reads

( 1 27T£1 >
Ty T g ) ) o =
&

hence

SuppﬂosH - Q x 2907 1+ |€|ILLOSH
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
ur + €,0,, (a1u)) = f1
un + Enawz ((Lgun) = f’I’QL

(©2; C?) satisfies

where g, — 0T, f,, := (f}, f2) satisfies (%), and a1, a2 € C(Q;R), a1,az # 0
everywhere.

By the localisation principle for one-scale H-measure g, with characteristic
length (e,,) associated to (u,) we get the relation

1 Jr o 2mi&1 | ai(x) 0O 2y [0 0 _—
(1+|€ [0 1]+1+|£|{ 0 O}+1+|§| [0 a2(x)}>ﬂ1sﬂ—07

whose (1,1) component reads
1 216y > 11
+1 a’l(x HosH = 07
(1 e T g b)) e

SUpp fiper € QX Sog,  sUpp ity € QU x (o U{& =0}).

hence
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
{ U}L + €n0, (alu}l) = fi

ui + €n 0, (agui) = f’I’QL

(©2; C?) satisfies

where g, — 0T, f,, := (f}, f2) satisfies (%), and a1, a2 € C(Q;R), a1,az # 0
everywhere.

By the localisation principle for one-scale H-measure g, with characteristic
length (e,,) associated to (u,) we get the relation

1 Jr o 2mi&1 | ai(x) 0O 2y [0 0 _—
(1+|€ [0 1]+1+|£|{ 0 O}+1+|§| [0 a2(x)}>ﬂ1sﬂ—07

whose (1,1) component reads
1 216y > 11
+1 a’l(x HosH = 07
(1 e T g b)) e

Supp fihspr © QX Yoo, supp posy € 2 x (Zo U {&1 = 0}).

hence
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
ur + €,0,, (a1u)) = f1
un + Enawz ((Lgun) = f’I’QL

(©2; C?) satisfies

where g, — 0T, f,, := (f}, f2) satisfies (%), and a1, a2 € C(Q;R), a1,az # 0
everywhere.

By the localisation principle for one-scale H-measure g, with characteristic
length (e,,) associated to (u,) we get the relation

1 Jr o 2mi&1 | ai(x) 0O 2y [0 0 _—
(1+|€ [0 1]+1+|£|{ 0 O}+1+|§| [0 a2(x)}>ﬂ1sﬂ—07

whose (1,1) component reads
1 216y > 11
+1 a’l(x HosH = 07
(1 e T g b)) e

supp fipspy © Q x {o0® 7Y 00OV}

hence
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Example 3: equations with characteristic length (1/2)

Let © C R? be open, and let u,, := (ul,u2) — 0in L2

loc
{ U}L + €n0, (alu}l) = fi

ui + €n 0, (agui) = f’I’QL

(©2; C?) satisfies

where g, — 0T, f,, := (f}, f2) satisfies (%), and a1, a2 € C(Q;R), a1,az # 0
everywhere.

By the localisation principle for one-scale H-measure g, with characteristic
length (e,,) associated to (u,) we get the relation

1 Jr o 2mi&1 | ai(x) 0O 2y [0 0 _—
(1+|€ [0 1]+1+|£|{ 0 O}+1+|§| [0 a2(x)}>ﬂ1sﬂ—07

whose (1,1) component reads
1 216y > 11
+1 a’l(x HosH = 07
(1 e T g b)) e

SuppuiiH g Q X {OO(O’_l)’ 00(011)} .

hence
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Example 3: equations with characteristic length (2/2)

Analogously, from the (2,2) component we get
supp ey € 2 x {00710, oMV}

hence supp b1 Nsupp p22, = 0 which implies p22, = p2l, = 0.
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Example 3: equations with characteristic length (2/2)

Analogously, from the (2,2) component we get
supp ey € 2 x {00710, oMV}

hence supp b1 Nsupp p22, = 0 which implies p22, = p2l, = 0.

The very definition of one-scale H-measures gives u,, u2 0.

This approach can be systematically generalised by introducing a variant of
compensated compactness suitable for problems with characteristic length.
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© One-scale H-distributions
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One-scale H-measures

Q C R? open

Theorem

If up, —0in L2 (Q), v, — 0in L () and w,, — 0T, then there exist (uy),

(vn) and ,ug:}li') € M(Q x Ko, (R?)) such that for any 1,2 € C.(Q2) and
Y € C(Ko,00(R?))

i | B (O @) d = (W) 12 B4)

The measure ug‘:’f;) is called the one-scale H-measure with characteristic length

(wy) associated to the (sub)sequences (u,) and (vy/).
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One-scale H-measures

Q C R? open

Theorem
If up, —0in L2 _(Q), v, = 0in L2 _(Q) and w,, — 0T, then there exist (u,),

loc loc

(vn) and ,ug:}li') € M(Q x Ko, (R?)) such that for any 1,2 € C.(Q2) and
Y € C(Ko,00(R?))

i [ A, (o1 o7 16 dx = 5 0 )

The measure ug‘:’f;) is called the one-scale H-measure with characteristic length

(wy) associated to the (sub)sequences (u,:) and (vy/).

Ay (u) = (0)", Pn(§) = P(wnf)
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One-scale H-

Q C R? open

Theorem

If up, = 0inL (Q), v, —0in LfOC(Q) and w,, — 0T, then there exist (uy),
(vn) and ylw n) ¢ D'(Q x Ko,00(R?)) such that for any @1, s € C2°(Q) and

Y ER

lim / Ao (prt0m) ) (20 )l = (82), o150 R )

The distribution vi‘:g{) is called the one-scale H-distribution with characteristic

length (w,,) associated to the (sub)sequences (u,) and (vy/).

Ay (u) = (1), Pn(§) = Y (wnf)
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One-scale H-distributions

Qngopen,p€<1,oo>,%+$:1

Theorem

If up, =0 inL (), v, = 0in LfOC(Q) and w,, — 0T, then there exist (uy,),
(vn) and ylw n) ¢ D’(Q x Ko,0o(R%)) such that for any ¢1, 2 € C(Q) and

Y eE

lim / Ao (prt0m) ) (20 )l = (82, o150 R

The distribution vi‘:g{) is called the one-scale H-distribution with characteristic

length (w,,) associated to the (sub)sequences (u,) and (vy/).

Ay (u) = (1), Pn(§) = Y (wnf)

Determine E such that
o A, : LP(RY) — LP(R?) is continuous

@ The First commutation lemma is valid
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Differential structure on Ky (RY)

For k € N U {0} let us define
C" (Ko oo (RY)) := {w € C(Kooo(RY) 1 90" = 90 T 1 € CR(A0, 71, 1])} .

It is not hard to check that C°(Kg o (R%)) and C(Kq,o(R?)) coincide.
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Differential structure on Ky (RY)

For k € N U {0} let us define
C" (Ko oo (RY)) := {w € C(Kooo(RY) 1 90" = 90 T 1 € CR(A0, 71, 1])} .

It is not hard to check that C°(Kg o (R%)) and C(Kq,o(R?)) coincide.
For ¢ € C"(Ko,0(R?)) we define [|[9)[|os (ko o (me)) = 19" or(afor 1))-

C*(A[0,71,1]) Banach algebra = C"(Kj(R?) Banach algebra

Al0,r1,1] compact = C"(A[0,r1,1]) separable
—  C"(Kgoo(R%) separable
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Differential structure on Ky (RY)

For k € N U {0} let us define
C" (Ko oo (RY)) := {w € C(Kooo(RY) 1 90" = 90 T 1 € CR(A0, 71, 1])} .

It is not hard to check that C°(Kg o (R%)) and C(Kq,o(R?)) coincide.
For ¢ € C"(Ko,0(R?)) we define [|[9)[|os (ko o (me)) = 19" or(afor 1))-

C*(A[0,71,1]) Banach algebra = C"(Kj(R?) Banach algebra
Al0,r1,1] compact = C"(A[0,r1,1]) separable
—  C"(Kgoo(R%) separable

Is Ay = (¢°)Y : L»(R?) — LP(R?) continuous?
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Theorem (Hormander-Mihlin)
If for ¢ € L>°(R?) there exists C' > 0 such that
(VERN(Va ey lal <r)  [0°0(E) <

where k = L%j + 1, then v is a Fourier multiplier. Moreover, we have

1
Ay |l ce mey) < Ca max{p7 2:}0
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Theorem (Hormander-Mihlin)
If for ¢ € L>°(R?) there exists C' > 0 such that

VECRNVa NG lal<r)  [97UE) < onr

where Kk = ng + 1, then 1) is a Fourier multiplier. Moreover, we have

1
Ayl 2Lr(rey) < Ca maX{I% ﬁ}c

We shall use Fad di Bruno formula: for sufficiently smooth functions
g:R?— R"and f:R" — R we have

0*(fog)®) =lall > CB),

1<IBI<|e| , BENG

1<) Y s
C(B,a) = (0 f)ﬁ(!g(ﬁ)) Z H Z H 0 93

S o=, 1 Bj
Sicieimen J=L sl =

y; :
@i €Np mENo\{O}
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For every j € 1..d and o € Ng we have

0= < 5% . €eR.

Let k € Ng. For every 1) € C*(Kg o (R?%)) and a € N¢ such that || < K we
have

191l cr (Ko, o0 (RA))

d
gl 0SSR

0%¢(&)] < Ch.a
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For every j € 1..d and o € Ng we have

0(7)€) < St ¢ R

a,d
€[l

Let k € Ng. For every 1) € C*(Kg o (R?%)) and a € N¢ such that || < K we
have

191l cr (Ko, o0 (RA))

d
gl 0SSR

0%¢(&)] < Ch.a

Therefore, for k > || + 1 and ¢ € C"(Ko oo (R?)) we have

|A¢||£(LP(R4)) < Cd,p ’l/}”CN(KO,oo(Rd')) .
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One-scale H-distributions

Theorem

If u, — 0 in L}, () and (v,) is bounded in L{ (), for some p € (1,00) and
q>p', and w, — 0T, then there exist subsequences (uy), (v,) and a complex

(supported) distribution of finite order l/§:}_}l) € D'(Q x Ko oo (R?)) such that for
any @1, 92 € Co(Q2) and ¢ € C* (Ko, (RY)), where k = | 4] + 1, we have

1g/n / ‘Aﬂ)n' (p1Un ) P20 dx = llnrp <902vn’7 Awn' (Solun’)>
R4

= <V§Z}}/), P12 X ¢> ;

where 1, := ¥ (wy,-). The distribution I/&)ﬁ,) we call one-scale H-distribution
(with characteristic length (w,,)) associated to (sub)sequences (u,:) and (v,).
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C%(Ko,00(R?)) and @1, ¢ € C.(Q) such that supp ¢1,supp p2 C Ky,
we have

| <902Un7“4111n (Solun» | < Cm,d

|1 1Loe (&) 19211 o0 (Bo) 1] o (oo (RA) 5

where K, are compacts such that K, C Int K,,, 1 and |J,, K, = €.

M. Erceg (UNIZG) One-scale H-distributions



The existence of one-scale H-distributions: proof 1/2

For ¢ € C%(Ko,00(R?)) and @1, ¢ € C.(Q) such that supp ¢1,supp p2 C Ky,
we have

| <902Un7“4111n (Solun» | < Cm,d

|1 1Loe (&) 19211 o0 (Bo) 1] o (oo (RA) 5
where K, are compacts such that K, C Int K,,, 1 and |J,, K, = €.

By the Cantor diagonal procedure (we have separability) ... we get trilinear form
L:

L(p1,92,7) = linrp<sozvnw4¢n,(<p1unf)> .
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C%(Ko,00(R?)) and @1, ¢ € C.(Q) such that supp ¢1,supp p2 C Ky,
we have

| {@2vn, Ay, (©1un)) | < Crmall@rllLee (g, 192]lLoe () 1] ox (koo (R 5

where K, are compacts such that K, C Int K,,, 1 and |J,, K, = €.

By the Cantor diagonal procedure (we have separability) ... we get trilinear form
L:

L(p1,92,7) = linrp<sozvnw4¢n,(<p1unf)> .

Commutation lemma == L(p1,p2,%) = L(p1P2, (1(2,9) -
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The existence of one-scale H-distributions: proof 1/2

For ¢ € C%(Ko,00(R?)) and @1, ¢ € C.(Q) such that supp ¢1,supp p2 C Ky,
we have

| {@2vn, Ay, (©1un)) | < Crmall@rllLee (g, 192]lLoe () 1] ox (koo (R 5

where K, are compacts such that K, C Int K,,, 1 and |J,, K, = €.

By the Cantor diagonal procedure (we have separability) ... we get trilinear form
L:

L(p1, p2,9) = linrp<sozvnw4¢n,(<p1unf)> .
Commutation lemma = L(p1,92,%) = L(p1$2,1(2, %) -
For ¢ € C.(Q) and ¢ € C*(Kp o (R?)) we define

L(p, ) == L(p,(,v),

where ( =1 on supp ¢.
L is continuous bilinear form on C.(Q) x C*(Kg o (R%)).
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The existence of one-scale H-distributions: proof 2/2

Theorem

Let Q C R4 be open, and let B be a continuous bilinear form on

0 (Q) x C* (Ko o0 (R?)). Then there exists a unique (supported) distribution
v € D'( x Koo (RY)) such that

(Vf € CX(Q)(Vg € C®(Ko(RY))) B(f,g)= (v, fRyg).

Moreover, if B is continuous on C¥(Q) x C!(Kg o (R?)) for some k,l € Ny, v is
of a finite order ¢ < k + 1+ 2d + 1.
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The existence of one-scale H-distributions: proof 2/2

Theorem

Let Q C R4 be open, and let B be a continuous bilinear form on
0 (Q) x C* (Ko o0 (R?)). Then there exists a unique (supported) distribution
v € D'( x Koo (RY)) such that

(Vf € CX(Q)(Vg € C®(Ko(RY))) B(f,g)= (v, fRyg).

Moreover, if B is continuous on C¥(Q) x C!(Kg o (R?)) for some k,l € Ny, v is
of a finite order ¢ < k + 1+ 2d + 1.

4

Therefore, we have that there exists uf‘:;;) € Dl 4 9441( x Ko oo (R)) such that

<V§‘§}§{)7 p1p2 M ¢> =L(p152,9)

:L(SDISEZu <1C27 dj)
:L(<;017 P2, ’(/}) = hnIp <S02vn’7 A’l/’n’ (Solun')>
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Outline

@ Multi-scale problems
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Example 4: oscillations - two characteristic length

0<a<p ksecZi\ {0},

e By L2
un<x) — eZm(n s+n”k)-x _“loc 0, n— oo
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Example 4: oscillations - two characteristic length

0<a<p ksecZi\ {0},

2
— 627ri(n°‘s+n5k)~x Lioe

Un (X) : — 0, n— o0
HH = AKX 5Tk|
50 T lim,, nfw,, =0
M((J(:;—I) =AK 5ck 5 hmn nﬁwn =cc <O, OO>
) oo lim,, n?w,, = 0o

Lower order term n® and corresponding direction of oscillations s we cannot
resemble in any case.
Therefore, we need some new methods and/or tools.
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Example 4: oscillations - two characteristic length

0<a<p ksecZi\ {0},

2
— 627ri(n°‘s+n5k)~x Lioe

Un (X) : — 0, n— o0
HH = AKX 5Tk|
50 T lim,, nfw,, =0
M((J(:;—I) =AK 5ck 5 hmn nﬁwn =cc <O, OO>
) oo lim,, n?w,, = 0o

Lower order term n® and corresponding direction of oscillations s we cannot
resemble in any case.
Therefore, we need some new methods and/or tools.

» L. Tartar: Multi-scale H-measures, Discrete and Continuous Dynamical
Systems - Series S 8 (2015) 77-90.

Still no satisfactory results.
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