One-scale H-distributions

Marko Erceg

Department of Mathematics, Faculty of Science University of Zagreb

 $\begin{array}{c} {\sf DIANA~Seminar}\\ {\sf Vienna,~23^{\rm rd}~November,~2018} \end{array}$

If we have $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

If we have $u_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

Example:

$$u_n(x) := e^{2\pi i n x} \frac{L_{\text{loc}}^2}{0},$$

but

$$|u_n(x)| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}).$$

If we have $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

Example:

$$u_n(x) := e^{2\pi i n x} \frac{L_{\text{loc}}^2}{0},$$

but

$$|u_n(x)| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}).$$

It is bounded in $L^1_{\mathrm{loc}}(\Omega) \hookrightarrow \mathcal{M}(\Omega) = (C_c(\Omega))'$, so

$$|u_{n'}|^2 \stackrel{*}{\longrightarrow} \nu$$
.

 ν is called the defect measure.

Of course, we have

$$u_{n'} \stackrel{\mathcal{L}^2_{\text{loc}}}{\longrightarrow} 0 \iff \nu = 0$$
.

If we have $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\Omega \subseteq \mathbf{R}^d$ open, what we can say about $|u_n|^2$?

Example:

$$u_n(x) := e^{2\pi i n x} \frac{L_{\text{loc}}^2}{0},$$

but

$$|u_n(x)| = 1 \quad \Longrightarrow \quad u_n \nrightarrow 0 \quad \text{in} \quad \mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}) \,.$$

It is bounded in $L^1_{\mathrm{loc}}(\Omega) \hookrightarrow \mathcal{M}(\Omega) = (C_c(\Omega))'$, so

$$|u_{n'}|^2 \stackrel{*}{\longrightarrow} \nu$$
.

 ν is called the defect measure.

Of course, we have

$$u_{n'} \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} 0 \iff \nu = 0.$$

If the defect measure is not trivial we need another objects to determine all the properties of the sequence:

- H-measures
- semiclassical measures

• ..

Outline

- H-measures and semiclassical measures
- One-scale H-measures
- One-scale H-distributions
- Multi-scale problems

Outline

- H-measures and semiclassical measures
- One-scale H-measures
- One-scale H-distributions
- Multi-scale problems

H-measures

 $\Omega \subseteq \mathbf{R}^d$ open.

Theorem (Tartar, 1990)

If $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, then there exist a subsequence $(u_{n'})$ and $\mu_H \in \mathcal{M}(\Omega \times S^{d-1})$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(S^{d-1})$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{(\varphi_1 u_{n'})}(\boldsymbol{\xi}) \widehat{(\varphi_2 u_{n'})}(\boldsymbol{\xi}) \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d\boldsymbol{\xi} = \langle \mu_H, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle.$$

(Unbounded) Radon measure μ_H we call the H-measure corresponding to the (sub)sequence (u_n) .

Notation:

$$\mathbf{x} = (x^1, x^2, \dots, x^d) \in \Omega, \quad \boldsymbol{\xi} = (\xi_1, \xi_2, \dots, \xi_d) \in \mathbf{R}^d$$

$$\hat{u}(\boldsymbol{\xi}) = \int_{\mathbf{R}^d} e^{-2\pi i \boldsymbol{\xi} \cdot \mathbf{x}} u(\mathbf{x}) d\mathbf{x}$$

$$\mathsf{a} \cdot \mathsf{b} = \sum_{i=1}^d a^i \bar{b}^i \; (\mathsf{a}, \mathsf{b} \in \mathbf{C}^r)$$

 $\langle \cdot, \cdot \rangle$ sesquilinear dual product

$$\mathcal{M}(X) = (C_c(X))', \quad (\varphi \boxtimes \psi)(\mathbf{x}, \boldsymbol{\xi}) = \varphi(\mathbf{x})\psi(\boldsymbol{\xi})$$

M. Erceg (UNIZG)

H-measures

 $\Omega \subseteq \mathbf{R}^d$ open.

Theorem (Tartar, 1990)

If $u_n \to 0$ in $L^2_{loc}(\Omega)$, then there exist a subsequence $(u_{n'})$ and $\mu_H \in \mathcal{M}(\Omega \times S^{d-1})$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C(S^{d-1})$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{(\varphi_1 u_{n'})}(\boldsymbol{\xi}) \overline{(\widehat{\varphi_2 u_{n'}})(\boldsymbol{\xi})} \psi\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) d\boldsymbol{\xi} = \langle \mu_H, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle.$$

(Unbounded) Radon measure μ_H we call the H-measure corresponding to the (sub)sequence (u_n) .

Corollary

$$u_n \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} 0 \iff \mu_H = 0.$$

Semiclassical measures

Theorem (Gérard, 1991)

If $u_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$, $\omega_n \to 0^+$, then there exist a subsequence $(u_{n'})$ and $\mu^{(\omega_{n'})}_{sc} \in \mathcal{M}(\Omega \times \mathbf{R}^d)$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}}(\boldsymbol{\xi}) \overline{\widehat{\varphi_2 u_{n'}}(\boldsymbol{\xi})} \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \left\langle \mu_{sc}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

(Unbounded) measure $\mu_{sc}^{(\omega_{n'})}$ we call the semiclassical measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

Semiclassical measures

Theorem (Gérard, 1991)

If $u_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$, $\omega_n \to 0^+$, then there exist a subsequence $(u_{n'})$ and $\mu^{(\omega_{n'})}_{sc} \in \mathcal{M}(\Omega \times \mathbf{R}^d)$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}}(\boldsymbol{\xi}) \overline{\widehat{\varphi_2 u_{n'}}(\boldsymbol{\xi})} \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \left\langle \mu_{sc}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

(Unbounded) measure $\mu_{sc}^{(\omega_{n'})}$ we call the semiclassical measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

Theorem

$$u_n \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longleftrightarrow} 0 \iff \mu_{sc}^{(\omega_n)} = 0 \quad \& \quad (u_n) \text{ is } (\omega_n) - \text{oscillatory }.$$

Semiclassical measures

Theorem (Gérard, 1991)

If $u_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$, $\omega_n \to 0^+$, then there exist a subsequence $(u_{n'})$ and $\mu_{sc}^{(\omega_{n'})} \in \mathcal{M}(\Omega \times \mathbf{R}^d)$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in \mathcal{S}(\mathbf{R}^d)$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}}(\boldsymbol{\xi}) \overline{\widehat{\varphi_2 u_{n'}}(\boldsymbol{\xi})} \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \left\langle \mu_{sc}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle.$$

(Unbounded) measure $\mu_{sc}^{(\omega_{n'})}$ we call the semiclassical measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

Definition

$$(u_n)$$
 is (ω_n) -oscillatory if $(\forall \varphi \in C_c^{\infty}(\Omega))$ $\lim_{R \to \infty} \limsup_n \int_{|\boldsymbol{\xi}| \geqslant \frac{R}{\omega}} |\widehat{\varphi u_n}(\boldsymbol{\xi})|^2 d\boldsymbol{\xi} = 0$.

Theorem

$$u_n \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} 0 \iff \mu_{sc}^{(\omega_n)} = 0 \quad \& \quad (u_n) \text{ is } (\omega_n) - \text{oscillatory }.$$

$$\alpha > 0$$
, $\mathbf{k} \in \mathbf{Z}^d \setminus \{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{1} \mathbf{0}, \ n \to \infty,$$

but

$$|u_n(\mathbf{x})| = 1 \implies u_n \nrightarrow 0 \text{ in } L^2_{loc}(\mathbf{R}^d).$$

$$\alpha > 0$$
, $\mathbf{k} \in \mathbf{Z}^d \setminus \{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{1} \mathbf{0}, \ n \to \infty,$$

but

$$\begin{split} |u_n(\mathbf{x})| &= 1 \quad \Longrightarrow \quad u_n \nrightarrow 0 \quad \text{in} \quad \mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}^d) \,. \\ \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{k}{|\mathbf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathbf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \end{split}$$

$$\alpha > 0$$
, $\mathbf{k} \in \mathbf{Z}^d \setminus \{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{1} \mathbf{0}, \ n \to \infty,$$

but

$$\begin{split} |u_n(\mathbf{x})| &= 1 \quad \Longrightarrow \quad u_n \nrightarrow 0 \quad \text{in} \quad \mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}^d) \,. \\ \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{k}{|\mathbf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathbf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \end{split}$$

$$\alpha > 0$$
, $k \in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{1} \mathbf{0}, \ n \to \infty,$$

but

$$\begin{split} |u_n(\mathbf{x})| &= 1 \quad \Longrightarrow \quad u_n \nrightarrow 0 \quad \text{in} \quad \mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}^d) \,. \\ \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \left\{ \begin{array}{l} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{array} \right. \\ \langle \mu_H, \varphi \boxtimes \psi \rangle &= \left\langle \mu_{sc}^{(\omega_n)}, \varphi \boxtimes \psi \left(\frac{\cdot}{|\cdot|}\right) \right\rangle \end{split}$$

$$\alpha > 0$$
, $k \in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \stackrel{\mathbf{L}^2_{loc}}{\longrightarrow} 0, \ n \to \infty,$$

but

$$\begin{split} |u_n(\mathbf{x})| &= 1 \quad \Longrightarrow \quad u_n \nrightarrow 0 \quad \text{in} \quad \mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}^d) \,. \\ \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \end{split}$$

Theorem

If $u_n \longrightarrow u$ in $L^2_{loc}(\Omega)$ is (ω_n) -oscillatory and $\mu^{(\omega_n)}_{sc}(\Omega \times \{0\}) = 0$, then u = 0 and

$$\langle \mu_H, \varphi \boxtimes \psi \rangle = \left\langle \mu_{sc}^{(\omega_n)}, \varphi \boxtimes \psi \left(\frac{\cdot}{|\cdot|} \right) \right\rangle.$$

$$\alpha > 0$$
, $k \in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{1} \mathbf{0}, \ n \to \infty,$$

but

$$\begin{split} |u_n(\mathbf{x})| &= 1 \quad \Longrightarrow \quad u_n \nrightarrow 0 \quad \text{in} \quad \mathrm{L}^2_{\mathrm{loc}}(\mathbf{R}^d) \,. \\ \nu &= \lambda \\ \mu_H &= \lambda \boxtimes \delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} \\ \mu_{sc}^{(\omega_n)} &= \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathsf{k}} &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_n n^\alpha \omega_n = \infty \end{cases} \end{split}$$

Theorem

If $u_n \longrightarrow u$ in $L^2_{loc}(\Omega)$ is (ω_n) -oscillatory and $\mu_{sc}^{(\omega_n)}(\Omega \times \{0\}) = 0$, then u = 0 and

$$\langle \mu_H, \varphi \boxtimes \psi \rangle = \left\langle \mu_{sc}^{(\omega_n)}, \varphi \boxtimes \psi \left(\frac{\cdot}{|\cdot|} \right) \right\rangle.$$

(ω_n) -concentrating property

Definition

$$\begin{array}{ll} (u_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall \, \varphi \in \mathrm{C}_c^\infty(\Omega)) & \lim_{R \to \infty} \limsup_n \int_{|\pmb{\xi}| \geqslant \frac{R}{\omega_n}} |\widehat{\varphi u_n}(\pmb{\xi})|^2 \, d\pmb{\xi} = 0 \, . \\ (u_n) \text{ is } (\omega_n)\text{-concentrating if} \\ (\forall \, \varphi \in \mathrm{C}_c^\infty(\Omega)) & \lim_{R \to \infty} \limsup_n \int_{|\pmb{\xi}| \leqslant \frac{1}{R\omega_n}} |\widehat{\varphi u_n}(\pmb{\xi})|^2 \, d\pmb{\xi} = 0 \, . \end{array}$$

(ω_n) -concentrating property

Definition

$$\begin{array}{ll} (u_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\geqslant\frac{R}{\omega_n}}|\widehat{\varphi u_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \\ (u_n) \text{ is } (\omega_n)\text{-concentrating if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\leqslant\frac{1}{R\omega_n}}|\widehat{\varphi u_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \end{array}$$

Lemma

$$(u_n) \omega_n$$
-concentrating $\iff \mu_{sc}^{(\omega_n)}(\Omega \times \{0\}) = 0$.

(ω_n) -concentrating property

Definition

$$\begin{array}{ll} (u_n) \text{ is } (\omega_n)\text{-oscillatory if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\geqslant\frac{R}{\omega_n}}|\widehat{\varphi u_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \\ (u_n) \text{ is } (\omega_n)\text{-concentrating if} \\ (\forall\,\varphi\in\mathrm{C}_c^\infty(\Omega)) & \lim_{R\to\infty}\limsup_n\int_{|\pmb{\xi}|\leqslant\frac{1}{R^{1-\epsilon}}}|\widehat{\varphi u_n}(\pmb{\xi})|^2\,d\pmb{\xi}=0\,. \end{array}$$

Lemma

$$(u_n) \omega_n$$
-concentrating $\iff \mu_{sc}^{(\omega_n)}(\Omega \times \{0\}) = 0$.

Theorem

If $u_n \longrightarrow u$ in $L^2_{loc}(\Omega)$ is (ω_n) -oscillatory and (ω_n) -concentrating, then u=0 and

$$\langle \mu_H, \varphi \boxtimes \psi \rangle = \left\langle \mu_{sc}^{(\omega_n)}, \varphi \boxtimes \psi \left(\frac{\cdot}{|\cdot|} \right) \right\rangle.$$

For an arbitrary bounded sequence (u_n) in $L^2_{loc}(\Omega)$ is there a characteristic length $\omega_n \to 0^+$ such that (u_n) is

- (ω_n) -oscillatory?
- (ω_n) -concentrating?
- both (ω_n) -oscillatory and (ω_n) -concentrating?

For an arbitrary bounded sequence (u_n) in $L^2_{loc}(\Omega)$ is there a characteristic length $\omega_n \to 0^+$ such that (u_n) is

- (ω_n) -oscillatory?
- (ω_n) -concentrating?
- both (ω_n) -oscillatory and (ω_n) -concentrating?
- \blacktriangleright M.E., M. Lazar: Characteristic scales of bounded L^2 sequences, Asymptotic Analysis **109**(3-4) (2018) 171–192.

One-scale H-distributions 8/33

$$0 < \alpha < \beta$$
, k, s $\in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{1} \mathbf{0}, \ n \to \infty$$

$$v_n(\mathbf{x}) := e^{2\pi i n^\beta \mathbf{s} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{\mathbf{0}} \, \mathbf{0} \, , \, \, n \to \infty$$

$$0 < \alpha < \beta$$
, k, s $\in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{2} \mathbf{0}, \ n \to \infty$$

$$v_n(\mathbf{x}) := e^{2\pi i n^{\beta} \mathbf{s} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{2} \mathbf{0}, \ n \to \infty$$

 $\mu_H \left(\mu_{sc}^{(\omega_n)} \right)$ is H-measure (semiclassical measure with characteristic length (ω_n) , $(\omega_n \to 0^+)$ associated to $(u_n + v_n)$.

$$\mu_H = \lambda \boxtimes \left(\delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} + \delta_{\frac{\mathsf{s}}{|\mathsf{s}|}}\right)$$

$$0<\alpha<\beta$$
, k, s $\in \mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{\mathbf{1}_{\text{loc}}} 0, \ n \to \infty$$
$$v_n(\mathbf{x}) := e^{2\pi i n^{\beta} \mathbf{s} \cdot \mathbf{x}} \frac{\mathbf{L}_{\text{loc}}^2}{\mathbf{1}_{\text{loc}}} 0, \ n \to \infty$$

 μ_H ($\mu_{sc}^{(\omega_n)}$) is H-measure (semiclassical measure with characteristic length (ω_n) , $\omega_n \to 0^+$) associated to $(u_n + v_n)$.

$$\begin{split} \mu_{H} &= \lambda \boxtimes \left(\delta_{\frac{k}{|\mathbf{k}|}} + \delta_{\frac{s}{|\mathbf{s}|}} \right) \\ \mu_{sc}^{(\omega_{n})} &= \lambda \boxtimes \begin{cases} 2\delta_{0} &, & \lim_{n} n^{\beta} \omega_{n} = 0 \\ (\delta_{cs} + \delta_{0}) &, & \lim_{n} n^{\beta} \omega_{n} = c \in \langle 0, \infty \rangle \\ \delta_{0} &, & \lim_{n} n^{\beta} \omega_{n} = \infty & \lim_{n} n^{\alpha} \omega_{n} = 0 \\ \delta_{ck} &, & \lim_{n} n^{\alpha} \omega_{n} = c \in \langle 0, \infty \rangle \\ 0 &, & \lim_{n} n^{\alpha} \omega_{n} = \infty \end{split}$$

Outline

- H-measures and semiclassical measures
- One-scale H-measures
- One-scale H-distributions
- Multi-scale problems

$\overline{[\mathrm{K}_{0,\infty}(\mathbf{R}^d)]}$

 $K_{0,\infty}(\mathbf{R}^d)$ is a compactification of $\mathbf{R}^d_* := \mathbf{R}^d \setminus \{0\}$ homeomorphic to a spherical layer (i.e. an annulus in \mathbf{R}^2):

Precise description of $K_{0,\infty}(\mathbf{R}^d)$ 1/2

For fixed $r_0>0$ let us define $r_1=\frac{r_0}{\sqrt{r_0^2+1}}$, and denote by

$$A[\mathbf{0}, r_1, 1] := \left\{ \boldsymbol{\zeta} \in \mathbf{R}^d : r_1 \leqslant |\boldsymbol{\zeta}| \leqslant 1 \right\}$$

closed d-dimensional spherical layer equipped with the standard topology (inherited from \mathbf{R}^d).

We want to construct a homeomorphism $\mathcal{J}: \mathbf{R}^d_* \longrightarrow \operatorname{Int} A[0, r_1, 1]$.

Precise description of $K_{0,\infty}(\mathbf{R}^d)$ 2/2

From the previous construction we get that $\mathcal{J}:\mathbf{R}^d_*\longrightarrow\operatorname{Int} A[0,r_1,1]$ is given by

$$\mathcal{J}(\boldsymbol{\xi}) = \frac{\boldsymbol{\xi}}{\sqrt{|\boldsymbol{\xi}|^2 + \left(\frac{|\boldsymbol{\xi}|}{|\boldsymbol{\xi}| + r_0}\right)^2}},$$

and $(A[0, r_1, 1], \mathcal{J})$ is a compactification of \mathbf{R}^d_* .

Precise description of $K_{0,\infty}(\mathbf{R}^d)$ 2/2

From the previous construction we get that $\mathcal{J}:\mathbf{R}^d_*\longrightarrow\operatorname{Int} A[0,r_1,1]$ is given by

$$\mathcal{J}(\boldsymbol{\xi}) = \frac{\boldsymbol{\xi}}{\sqrt{|\boldsymbol{\xi}|^2 + \left(\frac{|\boldsymbol{\xi}|}{|\boldsymbol{\xi}| + r_0}\right)^2}},$$

and $(A[0, r_1, 1], \mathcal{J})$ is a compactification of \mathbf{R}^d_* .

Lemma

For $\psi \in C(\mathbf{R}^d_*)$ we have $\psi \in C(K_{0,\infty}(\mathbf{R}^d))$ iff there exist $\psi_0, \psi_\infty \in C(S^{d-1})$ such that

$$\psi(\boldsymbol{\xi}) - \psi_0\left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|}\right) \to 0, \quad |\boldsymbol{\xi}| \to 0,$$

$$\psi(\boldsymbol{\xi}) - \psi_{\infty} \left(\frac{\boldsymbol{\xi}}{|\boldsymbol{\xi}|} \right) \to 0, \quad |\boldsymbol{\xi}| \to \infty.$$

Lemma

- i) $\mathcal{S}(\mathbf{R}^d) \hookrightarrow \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$, and
- ii) $\{\psi(\dot{\mathbf{1}}) : \psi \in C(S^{d-1})\} \hookrightarrow C(K_{0,\infty}(\mathbf{R}^d)).$

One-scale H-measures

Theorem (Tartar, 2009)

If $u_n \rightharpoonup 0$ in $L^2_{loc}(\Omega)$, $\omega_n \rightarrow 0^+$, then there exist a subsequence $(u_{n'})$ and $\mu_{osH}^{(\omega_{n'})} \in \mathcal{M}(\Omega \times \mathbf{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in \mathbf{C}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{(\varphi_1 u_{n'})}(\boldsymbol{\xi}) \widehat{(\varphi_2 u_{n'})}(\boldsymbol{\xi}) \psi(\omega_{n'} \boldsymbol{\xi}) \, d\boldsymbol{\xi} = \left\langle \mu_{osH}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle \, .$$

(Unbounded) Radon measure $\mu_{osH}^{(\omega_{n'})}$ we call the one-scale H-measure with characteristic length $(\omega_{n'})$ corresponding to the (sub)sequence $(u_{n'})$.

Generalisation of both H-measures and semiclassical measures.

▶ L. Tartar: The general theory of homogenization: A personalized introduction, Springer (2009).

Some properties of μ_{osH}

$$\bullet \ \mu_{osH}^{(\omega_n)} = 0 \iff \mu_H = 0$$

•
$$\mu_{osH}^{(\omega_n)} = 0 \implies \mu_{sc}^{(\omega_n)} = 0$$

•
$$\mu_{osH}^{(\omega_n)}(\Omega \times \Sigma_\infty) = 0 \iff (u_n) \text{ is } (\omega_n) - \text{oscillatory}$$

•
$$\mu_{osH}^{(\omega_n)}(\Omega \times \Sigma_0) = 0 \iff (u_n) \text{ is } (\omega_n) - \text{concentrating}$$

•
$$u_n \stackrel{\mathrm{L}^2_{\mathrm{loc}}}{\longrightarrow} 0 \iff \mu_{osH}^{(\omega_n)} = 0$$

Example 1 revisited

$$u_n(\mathbf{x})=e^{2\pi i n^{lpha}\mathbf{k}\cdot\mathbf{x}},$$

$$\mu_H=\lambda\boxtimes\delta_{\frac{\mathbf{k}}{|\mathbf{k}|}}$$

$$\mu_{sc}^{(\omega_n)} = \lambda \boxtimes \begin{cases} \delta_0 &, & \lim_n n^{\alpha} \omega_n = 0\\ \delta_{ck} &, & \lim_n n^{\alpha} \omega_n = c \in \langle 0, \infty \rangle\\ 0 &, & \lim_n n^{\alpha} \omega_n = \infty \end{cases}$$

$$\mu_{osH}^{(\omega_n)} = \lambda \boxtimes \left\{ \begin{array}{ll} \delta_{0^{\frac{k}{|k|}}} & , & \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathbf{k}} & , & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ \delta_{\infty^{\frac{k}{|k|}}} & , & \lim_n n^\alpha \omega_n = \infty \end{array} \right.$$

Example 2 - revisited

 $u_n(\mathbf{x}) = e^{2\pi i n^{\alpha} \mathbf{k} \cdot \mathbf{x}}, \ v_n(\mathbf{x}) = e^{2\pi i n^{\beta} \mathbf{s} \cdot \mathbf{x}},$ associated objects to $(u_n + v_n)$:

$$\mu_H = \lambda \boxtimes \left(\delta_{\frac{\mathsf{k}}{|\mathsf{k}|}} + \delta_{\frac{\mathsf{s}}{|\mathsf{s}|}} \right)$$

$$\mu_{sc}^{(\omega_n)} = \lambda \boxtimes \left\{ \begin{array}{ll} 2\delta_0 & , & \lim_n n^\beta \omega_n = 0 \\ (\delta_0 + \delta_{c\mathbf{s}}) & , & \lim_n n^\beta \omega_n = c \in \langle 0, \infty \rangle \\ \delta_0 & , & \lim_n n^\beta \omega_n = \infty \ \& \ \lim_n n^\alpha \omega_n = 0 \\ \delta_{c\mathbf{k}} & , & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ 0 & , & \lim_n n^\alpha \omega_n = \infty \end{array} \right.$$

$$\mu_{osH}^{(\omega_n)} = \lambda \boxtimes \left\{ \begin{array}{ll} \left(\delta_{0^{\frac{k}{|k|}}} + \delta_{0^{\frac{s}{|s|}}}\right) &, & \lim_n n^\beta \omega_n = 0 \\ \left(\delta_{0^{\frac{k}{|k|}}} + \delta_{cs}\right) &, & \lim_n n^\beta \omega_n = c \in \langle 0, \infty \rangle \\ \left(\delta_{0^{\frac{k}{|k|}}} + \delta_{\infty^{\frac{s}{|s|}}}\right) &, & \lim_n n^\beta \omega_n = \infty \ \& \ \lim_n n^\alpha \omega_n = 0 \\ \left(\delta_{ck} + \delta_{0^{\frac{s}{|k|}}}\right) &, & \lim_n n^\alpha \omega_n = c \in \langle 0, \infty \rangle \\ \left(\delta_{0^{\frac{k}{|k|}}} + \delta_{0^{\frac{s}{|s|}}}\right) &, & \lim_n n^\alpha \omega_n = \infty \end{array} \right.$$

Alternative proof (Antonić, E., Lazar)

- Cantor diagonal procedure (separability)
- commutation lemma
- a variant of the kernel lemma

Lemma

Let X and Y be two Hausdorff second countable topological manifolds (with or without a boundary), and let B be a non-negative continuous bilinear form on $C_c(X) \times C_c(Y)$. Then there exists a Radon measure $\mu \in \mathcal{M}(X \times Y)$ such that

$$(\forall f \in C_c(X))(\forall g \in C_c(Y)) \quad B(f,g) = \langle \mu, f \boxtimes g \rangle.$$

Furthermore, the above remains valid if we replace C_c by C_0 , and \mathcal{M} by \mathcal{M}_b (the space of bounded Radon measures, i.e. the dual of Banach space C_0).

▶ N. Antonić, M.E., M. Lazar: *Localisation principle for one-scale H-measures*, Journal of Functional Analysis **272** (2017) 3410–3454.

Localisation principle

Let $\Omega \subseteq \mathbf{R}^d$ open, $m \in \mathbf{N}$, $\mathbf{u}_n \rightharpoonup \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^r)$ and

$$\sum_{0\leqslant |\alpha|\leqslant m}\varepsilon_n^{|\alpha|}\partial_{\alpha}(\mathbf{A}_n^{\alpha}\mathbf{u}_n)=\mathbf{f}_n\quad\text{in }\Omega\,,$$

where

- $\varepsilon_n \to 0^+$
- $\mathbf{A}^{\alpha} \in \mathrm{C}(\Omega; \mathrm{M}_{\mathrm{r}}(\mathbf{C}))$
- $\bullet \ (\forall \, \varphi \in \mathrm{C}^\infty_c(\Omega)) \qquad \frac{\widehat{\varphi \mathsf{f}_n}}{1 + \sum_{s=0}^m |\varepsilon_n \boldsymbol{\xi}|^s} \longrightarrow 0 \quad \text{in} \quad \mathrm{L}^2(\mathbf{R}^d; \mathbf{C}^r) \qquad (*)$

Theorem (Antonić, E., Lazar, 2017)

Under previous assumptions, $\mu_{1sH}^{(\varepsilon_n)}$ associated to (u_n) satisfies

$$\mathbf{p}_1 \boldsymbol{\mu}_{1sH}^\top = \mathbf{0} \,,$$

where

$$\mathbf{p}_1(\mathbf{x}, \boldsymbol{\xi}) := \sum_{0 \leq |\boldsymbol{\alpha}| \leq m} (2\pi i)^{|\boldsymbol{\alpha}|} \frac{\boldsymbol{\xi}^{\boldsymbol{\alpha}}}{1 + |\boldsymbol{\xi}|^m} \mathbf{A}^{\boldsymbol{\alpha}}(\mathbf{x}).$$

Let $\Omega\subseteq {\bf R}^2$ be open, and let ${\bf u}_n:=(u_n^1,u_n^2)$ \longrightarrow 0 in ${\rm L}^2_{\rm loc}(\Omega;{\bf C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2)$ satisfies (*), and $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

Let $\Omega\subseteq {\bf R}^2$ be open, and let ${\bf u}_n:=(u_n^1,u_n^2) \longrightarrow {\bf 0}$ in ${\bf L}^2_{\rm loc}(\Omega;{\bf C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $f_n := (f_n^1, f_n^2)$ satisfies (*), and $a_1, a_2 \in C(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure μ_{1sH} with characteristic length (ε_n) associated to (\mathbf{u}_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{1sH}^\top = \mathbf{0} \,,$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{loc}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $\mathbf{f}_n := (f_n^1, \ f_n^2)$ satisfies (*), and $a_1, a_2 \in \mathrm{C}(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure μ_{1sH} with characteristic length (ε_n) associated to (\mathbf{u}_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \boldsymbol{\xi}_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \boldsymbol{\xi}_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{1sH}^{\top} = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\xi|} + i\frac{2\pi\xi_1}{1+|\xi|}a_1(\mathbf{x})\right)\mu_{osH}^{11} = 0,$$

hence

$$\frac{1}{1+|\pmb{\xi}|}\mu_{osH}^{11}=0\,,\quad \frac{\xi_1}{1+|\pmb{\xi}|}\mu_{osH}^{11}=0\,.$$

Let $\Omega\subseteq {\bf R}^2$ be open, and let ${\bf u}_n:=(u_n^1,u_n^2) \longrightarrow {\bf 0}$ in ${\bf L}^2_{\rm loc}(\Omega;{\bf C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $\mathbf{f}_n := (f_n^1, \ f_n^2)$ satisfies (*), and $a_1, a_2 \in \mathrm{C}(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure μ_{1sH} with characteristic length (ε_n) associated to (\mathbf{u}_n) we get the relation

$$\left(\frac{1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \boldsymbol{\xi}_1}{1+|\boldsymbol{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \boldsymbol{\xi}_2}{1+|\boldsymbol{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \boldsymbol{\mu}_{1sH}^{\top} = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\pmb{\xi}|} + i\frac{2\pi\xi_1}{1+|\pmb{\xi}|}a_1(\mathbf{x})\right)\mu_{osH}^{11} = 0\,,$$

hence

$$\operatorname{supp} \mu_{osH}^{11} \subseteq \Omega \times \Sigma_{\infty} \,, \quad \frac{\xi_1}{1+|\boldsymbol{\xi}|} \mu_{osH}^{11} = 0 \,.$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $\mathbf{f}_n := (f_n^1, \ f_n^2)$ satisfies (*), and $a_1, a_2 \in \mathrm{C}(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure μ_{1sH} with characteristic length (ε_n) associated to (\mathbf{u}_n) we get the relation

$$\left(\frac{1}{1+|\pmb{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\pmb{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\pmb{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \pmb{\mu}_{1sH}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\pmb{\xi}|} + i\frac{2\pi\xi_1}{1+|\pmb{\xi}|}a_1(\mathbf{x})\right)\mu_{osH}^{11} = 0,$$

hence

$$\operatorname{supp} \mu_{osH}^{11} \subseteq \Omega \times \Sigma_{\infty}, \quad \operatorname{supp} \mu_{osH}^{11} \subseteq \Omega \times (\Sigma_0 \cup \{\xi_1 = 0\}).$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $\mathbf{f}_n := (f_n^1, f_n^2)$ satisfies (*), and $a_1, a_2 \in \mathrm{C}(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure μ_{1sH} with characteristic length (ε_n) associated to (\mathbf{u}_n) we get the relation

$$\left(\frac{1}{1+|\pmb{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\pmb{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\pmb{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \pmb{\mu}_{1sH}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\pmb{\xi}|} + i\frac{2\pi\xi_1}{1+|\pmb{\xi}|}a_1(\mathbf{x})\right)\mu_{osH}^{11} = 0\,,$$

hence

$$\operatorname{supp} \mu_{osH}^{11} \subseteq \Omega \times \Sigma_{\infty}, \quad \operatorname{supp} \mu_{osH}^{11} \subseteq \Omega \times (\Sigma_0 \cup \{\xi_1 = 0\}).$$

Let $\Omega\subseteq {\bf R}^2$ be open, and let ${\bf u}_n:=(u_n^1,u_n^2) \longrightarrow {\bf 0}$ in ${\bf L}^2_{\rm loc}(\Omega;{\bf C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $\mathbf{f}_n := (f_n^1, \ f_n^2)$ satisfies (*), and $a_1, a_2 \in \mathrm{C}(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure μ_{1sH} with characteristic length (ε_n) associated to (\mathbf{u}_n) we get the relation

$$\left(\frac{1}{1+|\pmb{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\pmb{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\pmb{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \pmb{\mu}_{1sH}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\pmb{\xi}|} + i\frac{2\pi \xi_1}{1+|\pmb{\xi}|}a_1(\mathbf{x})\right)\mu_{osH}^{11} = 0\,,$$

hence

$$\operatorname{supp} \mu_{osH}^{11} \subseteq \Omega \times \{ \infty^{(0,-1)}, \infty^{(0,1)} \}.$$

Let $\Omega \subseteq \mathbf{R}^2$ be open, and let $\mathbf{u}_n := (u_n^1, u_n^2) \longrightarrow \mathbf{0}$ in $L^2_{\mathrm{loc}}(\Omega; \mathbf{C}^2)$ satisfies

$$\begin{cases} u_n^1 + \varepsilon_n \partial_{x_1}(a_1 u_n^1) = f_n^1 \\ u_n^2 + \varepsilon_n \partial_{x_2}(a_2 u_n^2) = f_n^2 \end{cases},$$

where $\varepsilon_n \to 0^+$, $\mathbf{f}_n := (f_n^1, \ f_n^2)$ satisfies (*), and $a_1, a_2 \in \mathrm{C}(\Omega; \mathbf{R})$, $a_1, a_2 \neq 0$ everywhere.

By the localisation principle for one-scale H-measure μ_{1sH} with characteristic length (ε_n) associated to (\mathbf{u}_n) we get the relation

$$\left(\frac{1}{1+|\pmb{\xi}|} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \frac{2\pi i \xi_1}{1+|\pmb{\xi}|} \begin{bmatrix} a_1(\mathbf{x}) & 0 \\ 0 & 0 \end{bmatrix} + \frac{2\pi i \xi_2}{1+|\pmb{\xi}|} \begin{bmatrix} 0 & 0 \\ 0 & a_2(\mathbf{x}) \end{bmatrix} \right) \pmb{\mu}_{1sH}^\top = \mathbf{0} \,,$$

whose (1,1) component reads

$$\left(\frac{1}{1+|\pmb{\xi}|} + i\frac{2\pi\xi_1}{1+|\pmb{\xi}|}a_1(\mathbf{x})\right)\mu_{osH}^{11} = 0\,,$$

hence

$$\operatorname{supp} \mu_{osH}^{11} \subseteq \Omega \times \{ \infty^{(0,-1)}, \infty^{(0,1)} \}.$$

Analogously, from the (2,2) component we get

$$\operatorname{supp} \mu_{osH}^{22} \subseteq \Omega \times \{ \infty^{(-1,0)}, \infty^{(1,0)} \},\,$$

hence $\operatorname{supp}\mu^{11}_{osH}\cap\operatorname{supp}\mu^{22}_{osH}=\emptyset$ which implies $\mu^{12}_{osH}=\mu^{21}_{osH}=0.$

Analogously, from the (2,2) component we get

$$\operatorname{supp} \mu_{osH}^{22} \subseteq \Omega \times \{ \infty^{(-1,0)}, \infty^{(1,0)} \},\,$$

hence $\operatorname{supp}\mu^{11}_{osH}\cap\operatorname{supp}\mu^{22}_{osH}=\emptyset$ which implies $\mu^{12}_{osH}=\mu^{21}_{osH}=0.$

The very definition of one-scale H-measures gives $u_n^1 \bar{u_n^2} \stackrel{*}{\longrightarrow} 0$.

This approach can be systematically generalised by introducing a variant of compensated compactness suitable for problems with characteristic length.

Outline

- 1 H-measures and semiclassical measures
- One-scale H-measures
- One-scale H-distributions
- Multi-scale problems

One-scale H-measures

 $\Omega \subseteq \mathbf{R}^d$ open

Theorem

If $u_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$, $v_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\mu^{(\omega_{n'})}_{osH} \in \mathcal{M}(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}_c(\Omega)$ and $\psi \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \widehat{\varphi_1 u_{n'}}(\boldsymbol{\xi}) \overline{\widehat{\varphi_2 v_{n'}}(\boldsymbol{\xi})} \psi(\omega_{n'} \boldsymbol{\xi}) d\boldsymbol{\xi} = \langle \mu_{osH}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle .$$

The measure $\mu_{osH}^{(\omega_{n'})}$ is called the one-scale H-measure with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

One-scale H-measures

 $\Omega \subseteq \mathbf{R}^d$ open

Theorem

If $u_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$, $v_n \rightharpoonup 0$ in $\mathrm{L}^2_{\mathrm{loc}}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\mu_{osH}^{(\omega_{n'})} \in \mathcal{M}(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}_c(\Omega)$ and $\psi \in \mathrm{C}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$

$$\lim_{n'} \int_{\mathbf{R}^d} \frac{\mathbf{A}_{\psi_n}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} \, d\mathbf{x} = \langle \mu_{osH}^{(\omega_{n'})}, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \rangle .$$

The measure $\mu_{osH}^{(\omega_{n'})}$ is called the one-scale H-measure with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

$$\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}, \ \psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$$

One-scale H-distributions

 $\Omega \subseteq \mathbf{R}^d$ open

Theorem

If $u_n \rightharpoonup 0$ in $\mathbf{L}^p_{\mathrm{loc}}(\Omega)$, $v_n \rightharpoonup 0$ in $\mathbf{L}^{p'}_{\mathrm{loc}}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\nu^{(\omega_{n'})}_{1sH} \in \mathcal{D}'(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in E$

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_n}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} \, d\mathbf{x} = \langle \nu_{1sH}^{(\omega_{n'})}, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \rangle .$$

The distribution $\nu_{1sH}^{(\omega_{n'})}$ is called the one-scale H-distribution with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

$$\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}, \ \psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$$

One-scale H-distributions

$$\Omega \subseteq \mathbf{R}^d$$
 open, $p \in \langle 1, \infty \rangle$, $\frac{1}{p} + \frac{1}{p'} = 1$

Theorem

If $u_n \rightharpoonup 0$ in $\mathrm{L}^p_{\mathrm{loc}}(\Omega)$, $v_n \rightharpoonup 0$ in $\mathrm{L}^{p'}_{\mathrm{loc}}(\Omega)$ and $\omega_n \to 0^+$, then there exist $(u_{n'})$, $(v_{n'})$ and $\nu^{(\omega_{n'})}_{1sH} \in \mathcal{D}'(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in \mathrm{C}^\infty_c(\Omega)$ and $\psi \in E$

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_n}(\varphi_1 u_{n'})(\mathbf{x}) \overline{(\varphi_2 v_{n'})(\mathbf{x})} \, d\mathbf{x} = \langle \nu_{1sH}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \rangle .$$

The distribution $\nu_{1sH}^{(\omega_{n'})}$ is called the one-scale H-distribution with characteristic length $(\omega_{n'})$ associated to the (sub)sequences $(u_{n'})$ and $(v_{n'})$.

$$\mathcal{A}_{\psi}(u) = (\psi \hat{u})^{\vee}, \ \psi_n(\boldsymbol{\xi}) := \psi(\omega_n \boldsymbol{\xi})$$

Determine E such that

- ullet $\mathcal{A}_{\psi}: \mathrm{L}^p(\mathbf{R}^d) \longrightarrow \mathrm{L}^p(\mathbf{R}^d)$ is continuous
- The First commutation lemma is valid

Differential structure on $K_{0,\infty}(\mathbf{R}^d)$

For $\kappa \in \mathbf{N}_0 \cup \{\infty\}$ let us define

$$C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)) := \left\{ \psi \in C(K_{0,\infty}(\mathbf{R}^d)) : \psi^* := \psi \circ \mathcal{J}^{-1} \in C^{\kappa}(A[0,r_1,1]) \right\}.$$

It is not hard to check that $C^0(K_{0,\infty}(\mathbf{R}^d))$ and $C(K_{0,\infty}(\mathbf{R}^d))$ coincide.

Differential structure on $K_{0,\infty}(\mathbf{R}^d)$

For $\kappa \in \mathbf{N}_0 \cup \{\infty\}$ let us define

$$C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)) := \left\{ \psi \in C(K_{0,\infty}(\mathbf{R}^d)) : \psi^* := \psi \circ \mathcal{J}^{-1} \in C^{\kappa}(A[0,r_1,1]) \right\}.$$

It is not hard to check that $C^0(K_{0,\infty}(\mathbf{R}^d))$ and $C(K_{0,\infty}(\mathbf{R}^d))$ coincide.

For
$$\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$$
 we define $\|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))} := \|\psi^*\|_{C^{\kappa}(A[0,r_1,1])}$.

$$\mathrm{C}^\kappa(A[0,r_1,1]) \quad \mathsf{Banach\ algebra} \quad \Longrightarrow \quad \mathrm{C}^\kappa(\mathrm{K}_{0,\infty}(\mathbf{R}^d)) \quad \mathsf{Banach\ algebra}$$

$$\begin{array}{ccc} A[0,r_1,1] & \mathsf{compact} & \Longrightarrow & \mathrm{C}^{\kappa}(A[0,r_1,1]) & \mathsf{separable} \\ & \Longrightarrow & \mathrm{C}^{\kappa}(\mathrm{K}_{0,\infty}(\mathbf{R}^d)) & \mathsf{separable} \end{array}$$

Differential structure on $K_{0,\infty}(\mathbf{R}^d)$

For $\kappa \in \mathbf{N}_0 \cup \{\infty\}$ let us define

$$C^{\kappa}(K_{0,\infty}(\mathbf{R}^d)) := \left\{ \psi \in C(K_{0,\infty}(\mathbf{R}^d)) : \psi^* := \psi \circ \mathcal{J}^{-1} \in C^{\kappa}(A[0,r_1,1]) \right\}.$$

It is not hard to check that $C^0(K_{0,\infty}(\mathbf{R}^d))$ and $C(K_{0,\infty}(\mathbf{R}^d))$ coincide.

For
$$\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$$
 we define $\|\psi\|_{C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))} := \|\psi^*\|_{C^{\kappa}(A[0,r_1,1])}$.

$$\mathrm{C}^\kappa(A[0,r_1,1]) \quad \mathsf{Banach\ algebra} \quad \Longrightarrow \quad \mathrm{C}^\kappa(\mathrm{K}_{0,\infty}(\mathbf{R}^d)) \quad \mathsf{Banach\ algebra}$$

$$A[0,r_1,1]$$
 compact \Longrightarrow $\mathrm{C}^{\kappa}(A[0,r_1,1])$ separable
$$\Longrightarrow \mathrm{C}^{\kappa}(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$$
 separable

Is
$$\mathcal{A}_{\psi} = (\psi \hat{\cdot})^{\vee} : L^p(\mathbf{R}^d) \longrightarrow L^p(\mathbf{R}^d)$$
 continuous?

Theorem (Hörmander-Mihlin)

If for $\psi \in L^{\infty}(\mathbf{R}^d)$ there exists C > 0 such that

$$(\forall \boldsymbol{\xi} \in \mathbf{R}_*^d)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d, |\boldsymbol{\alpha}| \leqslant \kappa) \qquad |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})| \leqslant \frac{C}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}},$$

where $\kappa = \lfloor \frac{d}{2} \rfloor + 1$, then ψ is a Fourier multiplier. Moreover, we have

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(L^{p}(\mathbf{R}^{d}))} \leqslant C_{d} \max \left\{ p, \frac{1}{p-1} \right\} C.$$

Theorem (Hörmander-Mihlin)

If for $\psi \in L^{\infty}(\mathbf{R}^d)$ there exists C > 0 such that

$$(\forall \boldsymbol{\xi} \in \mathbf{R}_*^d)(\forall \boldsymbol{\alpha} \in \mathbf{N}_0^d, |\boldsymbol{\alpha}| \leqslant \kappa) \qquad |\partial^{\boldsymbol{\alpha}} \psi(\boldsymbol{\xi})| \leqslant \frac{C}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}},$$

where $\kappa = \lfloor \frac{d}{2} \rfloor + 1$, then ψ is a Fourier multiplier. Moreover, we have

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(\mathbf{L}^{p}(\mathbf{R}^{d}))} \leqslant C_{d} \max \left\{ p, \frac{1}{n-1} \right\} C.$$

We shall use Faá di Bruno formula: for sufficiently smooth functions $g: \mathbf{R}^d \longrightarrow \mathbf{R}^r$ and $f: \mathbf{R}^r \longrightarrow \mathbf{R}$ we have

$$\partial^{\boldsymbol{\alpha}}(f \circ \mathbf{g})(\boldsymbol{\xi}) = |\boldsymbol{\alpha}|! \sum_{1 \leqslant |\boldsymbol{\beta}| \leqslant |\boldsymbol{\alpha}| \; , \; \boldsymbol{\beta} \in \mathbf{N}_{o}^{r}} C(\boldsymbol{\beta}, \boldsymbol{\alpha}) \, ,$$

where

$$C(\boldsymbol{\beta}, \boldsymbol{\alpha}) = \frac{(\partial^{\boldsymbol{\beta}} f)(\mathbf{g}(\boldsymbol{\xi}))}{\boldsymbol{\beta}!} \sum_{\substack{\sum_{i=1}^{r} \boldsymbol{\alpha}_{i} = \boldsymbol{\alpha}, \\ \boldsymbol{\alpha}_{i} \in \mathbf{N}_{0}^{d}}} \prod_{j=1}^{r} \sum_{\substack{\sum_{i=1}^{\beta_{j}} \boldsymbol{\gamma}_{i} = \boldsymbol{\alpha}_{j}, \\ \boldsymbol{\gamma}_{i} \in \mathbf{N}_{0}^{d} \setminus \{0\}}} \prod_{s=1}^{\beta_{j}} \frac{\partial^{\boldsymbol{\gamma}_{s}} g_{j}(\boldsymbol{\xi})}{\boldsymbol{\gamma}_{s}!}.$$

M. Erceg (UNIZG)

Lemma

For every $j \in 1..d$ and $\alpha \in \mathbf{N}_0^d$ we have

$$|\partial^{\boldsymbol{\alpha}}(\mathcal{J}_j)(\boldsymbol{\xi})| \leqslant \frac{C_{\boldsymbol{\alpha},d}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}} , \quad \boldsymbol{\xi} \in \mathbf{R}_*^d.$$

Theorem

Let $\kappa \in \mathbf{N}_0$. For every $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\alpha \in \mathbf{N}_0^d$ such that $|\alpha| \leqslant \kappa$ we have

$$|\partial^{\boldsymbol{\alpha}}\psi(\boldsymbol{\xi})| \leqslant C_{\kappa,d} \frac{\|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_*^d.$$

Lemma

For every $j \in 1..d$ and $\boldsymbol{\alpha} \in \mathbf{N}_0^d$ we have

$$|\partial^{\boldsymbol{\alpha}}(\mathcal{J}_j)(\boldsymbol{\xi})| \leqslant \frac{C_{\boldsymbol{\alpha},d}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_*^d.$$

Theorem

Let $\kappa \in \mathbf{N}_0$. For every $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\alpha \in \mathbf{N}_0^d$ such that $|\alpha| \leqslant \kappa$ we have

$$|\partial^{\boldsymbol{\alpha}}\psi(\boldsymbol{\xi})| \leqslant C_{\kappa,d} \frac{\|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))}}{|\boldsymbol{\xi}|^{|\boldsymbol{\alpha}|}}, \quad \boldsymbol{\xi} \in \mathbf{R}_*^d.$$

Therefore, for $\kappa \geqslant \lfloor \frac{d}{2} \rfloor + 1$ and $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ we have

$$\|\mathcal{A}_{\psi}\|_{\mathcal{L}(\mathbf{L}^p(\mathbf{R}^d))} \leqslant C_{d,p} \|\psi\|_{\mathbf{C}^{\kappa}(\mathbf{K}_{0,\infty}(\mathbf{R}^d))}$$
.

One-scale H-distributions

Theorem

If $u_n \longrightarrow 0$ in $L^p_{loc}(\Omega)$ and (v_n) is bounded in $L^q_{loc}(\Omega)$, for some $p \in \langle 1, \infty \rangle$ and $q \geqslant p'$, and $\omega_n \to 0^+$, then there exist subsequences $(u_{n'})$, $(v_{n'})$ and a complex (supported) distribution of finite order $\nu_{1sH}^{(\omega_{n'})} \in \mathcal{D}'(\Omega \times K_{0,\infty}(\mathbf{R}^d))$ such that for any $\varphi_1, \varphi_2 \in C_c(\Omega)$ and $\psi \in C^\kappa(K_{0,\infty}(\mathbf{R}^d))$, where $\kappa = \lfloor \frac{d}{2} \rfloor + 1$, we have

$$\lim_{n'} \int_{\mathbf{R}^d} \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \overline{\varphi_2 v_{n'}} d\mathbf{x} = \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle$$
$$= \left\langle v_{1sH}^{(\omega_{n'})}, \varphi_1 \overline{\varphi}_2 \boxtimes \psi \right\rangle,$$

where $\psi_n := \psi(\omega_n \cdot)$. The distribution $\nu_{1sH}^{(\omega_{n'})}$ we call one-scale H-distribution (with characteristic length $(\omega_{n'})$) associated to (sub)sequences $(u_{n'})$ and $(v_{n'})$.

For $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\varphi_1, \varphi_2 \in C_c(\Omega)$ such that $\operatorname{supp} \varphi_1, \operatorname{supp} \varphi_2 \subseteq K_m$, we have

$$|\langle \varphi_2 v_n, \mathcal{A}_{\psi_n}(\varphi_1 u_n) \rangle| \leqslant C_{m,d} \|\varphi_1\|_{\mathcal{L}^{\infty}(K_m)} \|\varphi_2\|_{\mathcal{L}^{\infty}(K_m)} \|\psi\|_{\mathcal{C}^{\kappa}(\mathcal{K}_{0,\infty}(\mathbf{R}^d))},$$

where K_m are compacts such that $K_m \subseteq \operatorname{Int} K_{m+1}$ and $\bigcup_m K_m = \Omega$.

For $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\varphi_1, \varphi_2 \in C_c(\Omega)$ such that $\operatorname{supp} \varphi_1, \operatorname{supp} \varphi_2 \subseteq K_m$, we have

$$|\langle \varphi_2 v_n, \mathcal{A}_{\psi_n}(\varphi_1 u_n) \rangle| \leqslant C_{m,d} \|\varphi_1\|_{\mathcal{L}^{\infty}(K_m)} \|\varphi_2\|_{\mathcal{L}^{\infty}(K_m)} \|\psi\|_{\mathcal{C}^{\kappa}(K_{0,\infty}(\mathbf{R}^d))},$$

where K_m are compacts such that $K_m \subseteq \operatorname{Int} K_{m+1}$ and $\bigcup_m K_m = \Omega$.

By the Cantor diagonal procedure (we have separability) ... we get $\underline{\mathsf{trilinear}}$ form L:

$$L(\varphi_1, \varphi_2, \psi) = \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle .$$

For $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\varphi_1, \varphi_2 \in C_c(\Omega)$ such that $\operatorname{supp} \varphi_1, \operatorname{supp} \varphi_2 \subseteq K_m$, we have

$$|\langle \varphi_2 v_n, \mathcal{A}_{\psi_n}(\varphi_1 u_n) \rangle| \leqslant C_{m,d} \|\varphi_1\|_{\mathcal{L}^{\infty}(K_m)} \|\varphi_2\|_{\mathcal{L}^{\infty}(K_m)} \|\psi\|_{\mathcal{C}^{\kappa}(K_{0,\infty}(\mathbf{R}^d))},$$

where K_m are compacts such that $K_m \subseteq \operatorname{Int} K_{m+1}$ and $\bigcup_m K_m = \Omega$.

By the Cantor diagonal procedure (we have separability) ... we get $\underline{\mathsf{trilinear}}$ form L:

$$L(\varphi_1, \varphi_2, \psi) = \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle.$$

Commutation lemma $\implies L(\varphi_1, \varphi_2, \psi) = L(\varphi_1 \bar{\varphi}_2, \zeta_1 \zeta_2, \psi)$.

For $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ and $\varphi_1, \varphi_2 \in C_c(\Omega)$ such that $\operatorname{supp} \varphi_1, \operatorname{supp} \varphi_2 \subseteq K_m$, we have

$$|\langle \varphi_2 v_n, \mathcal{A}_{\psi_n}(\varphi_1 u_n) \rangle| \leqslant C_{m,d} \|\varphi_1\|_{\mathcal{L}^{\infty}(K_m)} \|\varphi_2\|_{\mathcal{L}^{\infty}(K_m)} \|\psi\|_{\mathcal{C}^{\kappa}(K_{0,\infty}(\mathbf{R}^d))},$$

where K_m are compacts such that $K_m \subseteq \operatorname{Int} K_{m+1}$ and $\bigcup_m K_m = \Omega$.

By the Cantor diagonal procedure (we have separability) ... we get $\underline{\mathsf{trilinear}}$ form L:

$$L(\varphi_1, \varphi_2, \psi) = \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle.$$

Commutation lemma $\implies L(\varphi_1, \varphi_2, \psi) = L(\varphi_1 \bar{\varphi}_2, \zeta_1 \zeta_2, \psi)$.

For $\varphi \in C_c(\Omega)$ and $\psi \in C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$ we define

$$\mathcal{L}(\varphi,\psi) := L(\varphi,\zeta,\psi),$$

where $\zeta \equiv 1$ on $\operatorname{supp} \varphi$.

 \mathcal{L} is continuous bilinear form on $C_c(\Omega) \times C^{\kappa}(K_{0,\infty}(\mathbf{R}^d))$.

Theorem

Let $\Omega \subseteq \mathbf{R}^d$ be open, and let B be a continuous bilinear form on $\mathrm{C}^\infty_c(\Omega) \times \mathrm{C}^\infty(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$. Then there exists a unique (supported) distribution $\nu \in \mathcal{D}'(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that

$$(\forall f \in C_c^{\infty}(\Omega))(\forall g \in C^{\infty}(K_{0,\infty}(\mathbf{R}^d))) \quad B(f,g) = \langle \nu, f \boxtimes g \rangle .$$

Moreover, if B is continuous on $\mathrm{C}^k_c(\Omega) \times \mathrm{C}^l(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$ for some $k,l \in \mathbf{N}_0$, ν is of a finite order $q \leqslant k+l+2d+1$.

Theorem

Let $\Omega \subseteq \mathbf{R}^d$ be open, and let B be a continuous bilinear form on $\mathrm{C}^\infty_c(\Omega) \times \mathrm{C}^\infty(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$. Then there exists a unique (supported) distribution $\nu \in \mathcal{D}'(\Omega \times \mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that

$$(\forall f \in C_c^{\infty}(\Omega))(\forall g \in C^{\infty}(K_{0,\infty}(\mathbf{R}^d))) \quad B(f,g) = \langle \nu, f \boxtimes g \rangle .$$

Moreover, if B is continuous on $\mathrm{C}^k_c(\Omega) \times \mathrm{C}^l(\mathrm{K}_{0,\infty}(\mathbf{R}^d))$ for some $k,l \in \mathbf{N}_0$, ν is of a finite order $q \leqslant k+l+2d+1$.

Therefore, we have that there exists $\nu_{1sH}^{(\omega_{n'})}\in\mathcal{D}'_{\kappa+2d+1}(\Omega\times\mathrm{K}_{0,\infty}(\mathbf{R}^d))$ such that

$$\begin{split} \left\langle \nu_{1sH}^{(\omega_{n'})}, \varphi_1 \bar{\varphi}_2 \boxtimes \psi \right\rangle = & \mathcal{L}(\varphi_1 \bar{\varphi}_2, \psi) \\ = & L(\varphi_1 \bar{\varphi}_2, \zeta_1 \zeta_2, \psi) \\ = & L(\varphi_1, \varphi_2, \psi) = \lim_{n'} \left\langle \varphi_2 v_{n'}, \mathcal{A}_{\psi_{n'}}(\varphi_1 u_{n'}) \right\rangle \end{split}$$

Outline

- H-measures and semiclassical measures
- One-scale H-measures
- One-scale H-distributions
- Multi-scale problems

Example 4: oscillations - two characteristic length

$$0<\alpha<\beta$$
, k,s $\in \mathbf{Z}^d\setminus\{\mathbf{0}\}$,

$$u_n(\mathbf{x}) := e^{2\pi i (n^{\alpha} \mathbf{s} + n^{\beta} \mathbf{k}) \cdot \mathbf{x}} \stackrel{\mathbf{L}^2_{loc}}{\longrightarrow} 0, \ n \to \infty$$

Example 4: oscillations - two characteristic length

$$0 < \alpha < \beta$$
, k, s $\in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i (n^{\alpha} \mathbf{s} + n^{\beta} \mathbf{k}) \cdot \mathbf{x}} \stackrel{\mathbf{L}^2_{loc}}{\longrightarrow} 0, \ n \to \infty$$

$$\begin{split} \mu_{H} &= \lambda \boxtimes \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} \\ \mu_{osH}^{(\omega_{n})} &= \lambda \boxtimes \begin{cases} \delta_{\frac{\mathbf{k}}{0}|\mathbf{k}|} &, & \lim_{n} n^{\beta} \omega_{n} = 0 \\ \delta_{c\mathbf{k}} &, & \lim_{n} n^{\beta} \omega_{n} = c \in \langle 0, \infty \rangle \\ \delta_{\infty}^{-\frac{\mathbf{k}}{|\mathbf{k}|}} &, & \lim_{n} n^{\beta} \omega_{n} = \infty \end{cases} \end{split}$$

Lower order term n^{α} and corresponding direction of oscillations s we cannot resemble in any case.

Therefore, we need some new methods and/or tools.

Example 4: oscillations - two characteristic length

$$0 < \alpha < \beta$$
, k, s $\in \mathbf{Z}^d \setminus \{0\}$,

$$u_n(\mathbf{x}) := e^{2\pi i (n^{\alpha} \mathbf{s} + n^{\beta} \mathbf{k}) \cdot \mathbf{x}} \stackrel{\mathbf{L}^2_{loc}}{\longrightarrow} 0, \ n \to \infty$$

$$\begin{split} \mu_{H} &= \lambda \boxtimes \delta_{\frac{\mathbf{k}}{|\mathbf{k}|}} \\ \mu_{osH}^{(\omega_{n})} &= \lambda \boxtimes \begin{cases} \delta_{\frac{\mathbf{k}}{0}|\overline{\mathbf{k}}|} &, & \lim_{n} n^{\beta} \omega_{n} = 0 \\ \delta_{c\mathbf{k}} &, & \lim_{n} n^{\beta} \omega_{n} = c \in \langle 0, \infty \rangle \\ \delta_{\infty}^{-\frac{\mathbf{k}}{|\mathbf{k}|}} &, & \lim_{n} n^{\beta} \omega_{n} = \infty \end{cases} \end{split}$$

Lower order term n^{α} and corresponding direction of oscillations s we cannot resemble in any case.

Therefore, we need some new methods and/or tools.

▶ L. Tartar: *Multi-scale H-measures*, Discrete and Continuous Dynamical Systems - Series S **8** (2015) 77–90.

Still no satisfactory results.

References & The End:) (thank you all)

H-measures

- ▶ L. Tartar: *H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial differential equations,* Proceedings of the Royal Society of Edinburgh, **115A** (1990) 193–230.
- ▶ P. Gérard: *Microlocal defect measures,* Comm. Partial Diff. Eq. **16** (1991) 1761–1794.

Semiclassical (Wigner) measures

- ▶ P. Gérard: Mesures semi-classiques et ondes de Bloch, Sem. EDP 1990–91 (exp. 16), (1991).
- ▶ P. L. Lions, T. Paul: *Sur les measures de Wigner*, Revista Mat. Iberoamericana **9**, (1993) 553–618.
- M.E., M. Lazar: Characteristic scales of bounded L² sequences, Asymptotic Anal. 109(3-4) (2018) 171−192.

References & The End:) (thank you all)

One-scale H-measures

- ▶ L. Tartar: The general theory of homogenization: A personalized introduction, Springer (2009), Chapter 32.
- ▶ L. Tartar: *Multi-scale H-measures*, Discrete Continuous Dyn. Syst. Ser. S **8** (2015) 77–90.
- ▶ N. Antonić, M.E., M. Lazar: *Localisation principle for one-scale H-measures*, J. Funct. Anal. **272** (2017) 3410–3454.

H-distributions and one-scale H-distributions

- N. Antonić, D. Mitrović: *H-distributions* an extension of *H-measures to an* $L^p L^q$ setting, Abstr. Appl. Anal. (2011), Article ID 901084, 12 pages.
- ▶ M.E.: One-scale H-measures and variants (in Croatian), Ph.D. thesis, University of Zagreb, Zagreb (2016).